雷毅
,
郭建良
高分子材料科学与工程
以纳米ZnO和纳米SiO2作为复合填料,通过热压成型工艺制备了纳米ZnO-SiO2复合填充超高分子量聚乙烯(UHMWPE)复合材料;采用销-盘式摩擦磨损试验机考察了复合材料在干摩擦条件下与45#钢配副时的摩擦磨损行为;采用扫描电子显微镜观察了复合材料磨损表面形貌.结果表明,适量的纳米ZnO-SiO2作为复合填料可有效地改善UHMWPE的摩擦磨损性能,其中填充2%ZnO+2%SiO2的UHMWPE基复合材料改性效果最为明显.与纯UHMWPE材料相比,其磨损率下降了84.7%.纯UHMWPE的磨损机制主要表现为粘着磨损和疲劳磨损,而不同含量的无机纳米微粒共混填充UHMWPE基复合材料的磨损机制主要表现为不同程度的粘着磨损、犁沟效应和塑性变形特征.
关键词:
超高分子量聚乙烯
,
纳米ZnO
,
纳米SiO2
,
复合填充
,
摩擦磨损性能
雷毅
,
郭建良
,
张雁翔
高分子材料科学与工程
用热压成型法制备了纳米TiO2填充超高分子量聚乙烯(UHMWPE)复合材料,采用销-盘式摩擦磨损试验机考察了复合材料在干摩擦条件下与45#钢配副时的摩擦磨损行为,采用扫描电子显微镜观察了复合材料磨损表面形貌.结果表明,填充质量分数为15%的纳米TiO2能显著改善UHMWPE的耐磨性能.纯UHMWPE的摩擦过程中呈现出一次磨合期、一次稳定期、二次磨合期和二次稳定期四个明显的特征.当填充质量分数为15%的纳米TiO2,时,UHMWPE基复合材料的摩擦过程中二次磨合特征已基本消失,整个摩擦过程的基本特征主要表现为磨合期和稳定期两个阶段,且磨合时间明显缩短,同时复合材料的磨损表面出现了明显的贫Ti区和富Ti区,其磨损机制主要表现为粘着磨损,局部磨损表面呈现了轻微的塑性变形特征.
关键词:
超高分子量聚乙烯
,
纳米氧化钛
,
摩擦过程
,
摩擦磨损性能