孙大鹏
,
赵永慧
,
苏海燕
,
李微雪
催化学报
doi:10.1016/S1872-2067(12)60604-4
采用从头算原子热力学方法系统研究了Ni-rich和Pt-rich条件下Pt3Ni(111)在不同偏析、表面化学吸附氧覆盖度下560个可能结构的相对稳定性,构建了氧气气氛下Pt3Ni(111)表面结构演化、直至满覆盖化学吸附氧的热力学相图.结果表明,随着氧的化学势的升高,在热力学上仅出现两类稳定的结构,主要包括没有化学吸附氧的干净Pt-skin表面,以及在很低氧的化学势下就形成自含有化学吸附氧的Ni-skin表面,而有化学吸附氧的PtNi表面合金化的中间结构则处于亚稳态.仔细分析发现,这些结构的形成主要由金属的偏析能、氧与两种金属成键强弱的差别、氧的化学势的高低三个因素共同决定.
关键词:
Pt3Ni
,
氧气
,
偏析
,
相图
,
从头算
马秀芳
,
赵永慧
,
苏海燕
,
李微雪
催化学报
doi:10.3724/SP.J.1088.2012.20617
采用密度泛函理论对比研究了Rh(111)表面与Rh@Cu(111)表面合金上乙基加氢反应及CO插入反应过程.结果发现,与Rh(111)表面相比,Rh@Cu(111)表面合金的集团效应和配体效应使得加氢反应的能垒降低了0.12 eV,而CO插入反应的却显著降低了0.78 eV.这表明RhCu合金催化剂可以有效地提高氢甲酰化反应的选择性.
关键词:
氢甲酰化
,
铑
,
铜
,
合金
,
密度泛函理论
赵成成
,
赵永慧
,
李圣刚
,
孙予罕
催化学报
doi:10.1016/S1872-2067(17)62817-1
研究发现,Pd和Co3O4催化剂均可有效地催化甲烷燃烧反应,且Pd掺杂的Co3O4催化剂上甲烷反应活性优于单纯的Pd和Co3O4催化剂,可见两者存在明显的协同效应.然而由于Co3O4本身复杂的表面配位环境,相关理论模拟研究依然较少.同时,由于甲烷分子中C–H键有着非常高的键能,且该分子具有很高的对称性,导致C–H键活化往往是甲烷选择转化和完全燃烧反应中最困难的一步.由于Co3O4表面电子结构比较复杂,因此本文基于Co3O4(001)晶面的两种不同暴露面来构建和模拟Pd掺杂Co3O4表面Pd?O位点的甲烷反应活性.对于Co3O4(001)–A晶面,暴露面金属离子只有未饱和的八面体Coo,而(001)–B晶面,还有四面体Cot.由于Pd取代Cot后所形成的Pd/(001)–B面更不稳定,因而选择了较稳定的Pd替换Coo结构模型.基于第一性原理PBE+U计算的Pd/(001)表面甲烷活化能垒来探讨Pd掺杂对Co3O4表面催化活性的影响.计算表明,甲烷在Pd掺杂的(001)面上最低解离能垒为0.68 eV,明显低于在Co3O4(001)和(011)面的(分别为0.98和0.89 eV),表明Pd掺杂的(001)表面催化活性要远高于纯的Co3O4(001)和(011)表面.为了进一步理解Pd掺杂影响Co3O4表面甲烷反应活性的原因,我们计算了反应位点相关原子的Bader电荷.结果表明,当CH3δ–吸附于Pd/(001)–A面Pd位点时,Pd较(001)面上Co位点能从CH3δ–获得更多电子,这与Pd较Co有更强的氧化性一致.我们也对比了(001)–A,(001)–B,Pd/(001)–A和Pd/(001)–B在氧气分压为常压及不同温度下表面能的大小,并发现在与反应相关的温度区间(001)–A表面较(001)–B表面更为稳定,同样地Pd/(001)–A表面也较Pd/(001)–B表面更为稳定,且Pd/(001)–A表面与(001)–A表面稳定性差别不大,因此Pd单原子掺杂的(001)表面模型在热力学上较为稳定,且根据计算的能垒,(001)–A和Pd/(001)–A表面对甲烷活化的贡献最大.为了更好与实验结果对比,我们构建了简单的动力学模型,并计算了甲烷在Co3O4(001),(011)和1%,2%,3%Pd掺杂的Co3O4(001)表面的甲烷燃烧速率.计算表明即使较低量的Pd也可明显提高甲烷燃烧速率,与实验数据吻合较好,表明掺杂Pd显著增加Co3O4催化甲烷燃烧.
关键词:
四氧化三钴
,
钯掺杂
,
甲烷燃烧
,
密度泛函理论计算
,
反应速率
,
碰撞理论
丛林娜
,
赵永慧
,
李圣刚
,
孙予罕
催化学报
doi:10.1016/S1872-2067(17)62823-7
甲烷氧化偶联反应(OCM)是天然气直接转化利用的重要途径之一.该反应通过甲烷和氧气在催化剂作用下一步将甲烷直接转化为乙烯等具有高附加值的产品,避免了涉及高能耗过程的合成气间接路径,不仅有可能减少中间副产物的生成,还有可能大大提升整个过程的能源利用效率.因此,研究OCM反应具有十分重要的实际意义.目前氧化镧基催化剂具有良好的催化活性、产物选择性和热稳定性,但在OCM反应中产品收率仍未能达到工业应用的要求,因而近几十年来高效OCM催化剂的研发一直是研究热点.实验发现,锶掺杂氧化镧催化剂具有更为优异的催化性能,主要表现在具有比纯氧化镧催化剂更高的催化活性和产物选择性,但对于锶掺杂的影响机制仍然缺乏系统的理论研究.目前普遍认为,甲烷活化是OCM反应的第一步,也是决速步,这主要是由于C?H键活化需要越过很高的能垒,因此往往需要很高的温度.本文主要采用团簇模型,通过密度泛函理论计算来研究OCM反应中锶掺杂对氧化镧催化剂上甲烷活化性能的影响及其作用原理.本文构建了八种锶掺杂的氧化镧团簇作为该催化剂模型,可分为没有自由基性质的团簇(LaSrO2(OH),La2SrO4,La3SrO5(OH),La5SrO8(OH))和具有自由基性质的团簇(LaSrO3,La2SrO4(OH),La3SrO6,La5SrO9).我们计算了甲烷在这些锶掺杂氧化镧团簇上Sr?O和La?O酸碱对位点以及氧自由基活性位点上的活化机制,以研究锶掺杂对OCM反应活性的影响,并与我们前期计算的纯氧化镧团簇上甲烷活化性能进行了对比.通过计算甲烷在不同锶掺杂氧化镧团簇上的物理和化学吸附能、活化能垒以及甲基自由基的脱附能,发现锶掺杂氧化镧团簇上的甲烷活化在热力学和动力学上都要比纯氧化镧团簇上更为有利.对于具有相同金属原子数目的团簇,甲烷在La?O上活化的能垒大小为:化学计量比的La?Sr?O团簇<非化学计量比的La?Sr?O团簇<化学计量比的La?O团簇;而甲烷在Sr?O上活化的能垒大小依次是:化学计量比的La?Sr?O团簇<非化学计量比的La?Sr?O团簇.给定一个锶掺杂氧化镧团簇,甲烷在不同活化位点上的活化能垒大小通常是:O·<
关键词:
甲烷活化
,
甲基自由基产生
,
团簇模型
,
密度泛函理论
,
锶掺杂
,
氧化镧
赵永慧
,
李圣刚
,
孙予罕
催化学报
doi:10.1016/S1872-2067(12)60565-8
使用密度泛函理论研究了Pd掺杂的Ni(111),Ni(100)和Ni(211)表面最稳定的结构,同时考察了干净的和Pd掺杂的Ni表面催化CH4解离反应的活性.结果表明,由Pd原子取代最外层Ni原子而形成的表面Pd掺杂的Ni表面在热力学上最为稳定,亚表面Pd掺杂的Ni表面在热力学上都不稳定;而对于表面Pd吸附的Ni表面,只有Pd/Ni(211)表面是稳定的,表面掺杂的Pd/Ni表面上CH4解离中间体(CH4,CH3,CH,C,H)吸附能的计算结果表明,Pd的掺杂在不同程度上减弱了除CH4之外各解离中间体的吸附能.另外,CH4和CH均优先在Ni(211)和Pd/Ni(211)台阶面上解离,其次是在比较开阔的Ni(100)和Pd/Ni(100)表面上.Pd的掺杂不同程度上提高了CH4和CH解离的能垒,对于活性最高的Ni(211)面,Pd的掺杂使得CH脱氢的能垒较CH4脱氢的高,改变了其速率控制步骤,从而抑制了积碳的生成.
关键词:
甲烷重整
,
镍催化剂
,
钯掺杂
,
积碳
,
密度泛函理论