{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过理论分析计算、计算机模拟和工艺实验,对Si/SiGe异质结双极晶体管(HBT)的结构参数进行了精细的优化设计,特别是采用了本征间隔层和新颖的Ge分布曲线,有效地削弱了基区杂质外扩散、基区复合和异质结势垒效应的不利影响.开发了兼容于硅工艺的锗硅HBT工艺,并据此试制出了Si/SiGeHBT,测量结果表明,器件的直流和交流特性均较好,电流放大系数为50,截止频率fT为5.1GHz.","authors":[{"authorName":"杨沛锋","id":"dc512b27-009e-420c-98d9-9e268feba8ca","originalAuthorName":"杨沛锋"},{"authorName":"李开成","id":"1641f2b6-ec3b-48a9-8b3b-5e0de9d71310","originalAuthorName":"李开成"},{"authorName":"何林","id":"7ba59d47-3053-4377-8622-f8ab2bc4b4b8","originalAuthorName":"何林"},{"authorName":"刘道广","id":"125afcf1-bb8a-453d-ab2b-1ad2b6ccd5a4","originalAuthorName":"刘道广"},{"authorName":"张静","id":"9ddfdae5-4688-4b35-bc02-1344daa9661b","originalAuthorName":"张静"},{"authorName":"李竞春","id":"1617b05e-f5a7-414e-80e9-bcf69216cf49","originalAuthorName":"李竞春"},{"authorName":"谢孟贤","id":"354dc92f-5242-4bf7-8281-f9997822ce1e","originalAuthorName":"谢孟贤"},{"authorName":"杨谟华","id":"a5c6a227-93a3-499e-92d8-4019ced0a371","originalAuthorName":"杨谟华"}],"doi":"10.3969/j.issn.1007-4252.2002.02.007","fpage":"123","id":"3b3140ea-9d39-4855-891e-240b6b47fb27","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"bbac0ece-09e9-4874-a061-f9323e34d195","keyword":"锗硅材料","originalKeyword":"锗硅材料"},{"id":"05833885-355d-49d6-91df-df88d30abe2a","keyword":"分子束外延","originalKeyword":"分子束外延"},{"id":"becbc06f-6950-4397-a252-62500c75ee9c","keyword":"异质结双极晶体管","originalKeyword":"异质结双极晶体管"},{"id":"264efc32-4e8a-4ca9-842a-f1b83117a78e","keyword":"优化设计","originalKeyword":"优化设计"}],"language":"zh","publisherId":"gnclyqjxb200202007","title":"Si/SiGe异质结双极晶体管的研制","volume":"8","year":"2002"},{"abstractinfo":"采用A12O3TiO2SiC2、SiC四种纳米粒子以及不同百分含量改性丁腈改性酚醛树脂,利用机械共混的方法制备了纳米粒子改性丁腈改性酚醛树脂材料.通过热失重分析表明,A3和T5的耐热性得到了提高,在高温阶段A3又高于T5,说明A3的耐热性最好.摩擦磨损对比试验表明,A12O3、TiO2纳米粒子可显著提高改性丁腈酚醛树脂的耐热性、增加摩擦系数、降低磨损率;SiO2SiC纳米粒子对树脂的摩擦磨损性能没有明显改善.","authors":[{"authorName":"李长虹","id":"4db89b5e-906b-4d42-82e1-2bbff783bc39","originalAuthorName":"李长虹"},{"authorName":"冯雨","id":"df48b64d-3360-436c-84e8-dc526094844d","originalAuthorName":"冯雨"},{"authorName":"何林","id":"4ffeb9c7-1c46-4483-bc05-9acb9d463765","originalAuthorName":"何林"},{"authorName":"闫建伟","id":"1d7eecd4-be9f-4fb7-94f0-a23958bd8bf0","originalAuthorName":"闫建伟"},{"authorName":"谢志平","id":"9679eef0-fdfa-45b7-b059-2f6686b6ed42","originalAuthorName":"谢志平"},{"authorName":"刘勇","id":"7777dbb1-f72f-443e-9ef0-de5358516ffa","originalAuthorName":"刘勇"},{"authorName":"杨志健","id":"ddb40bec-d4e2-4c1c-8091-dcf9913807e2","originalAuthorName":"杨志健"}],"doi":"","fpage":"59","id":"4addc2d0-870a-491c-b262-c5ff0c253e3b","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"5f22701c-a049-4440-a54a-83ca49b440c4","keyword":"纳米","originalKeyword":"纳米"},{"id":"ab0f30f0-829f-4ee7-b20a-ad5c870c1701","keyword":"摩擦材料","originalKeyword":"摩擦材料"},{"id":"10c45f52-d32e-46e7-a098-7f2a63cdcbf9","keyword":"丁腈改性酚醛树脂","originalKeyword":"丁腈改性酚醛树脂"},{"id":"82ee7d43-29d1-4542-89f2-9ceeab4045bd","keyword":"摩擦系数","originalKeyword":"摩擦系数"},{"id":"3b4f6804-9050-4286-a8de-aa7ff9f9998a","keyword":"磨损","originalKeyword":"磨损"}],"language":"zh","publisherId":"gfzclkxygc200902018","title":"纳米粒子对丁腈改性酚醛树脂摩擦磨损性能的影响","volume":"25","year":"2009"},{"abstractinfo":"综述了影响纳米复相陶瓷力学性能的多种因素,包括原始粉料粒径、纳米添加相的含量、显微结构及热处理工艺等,指出了存在的问题及今后的研究方向.","authors":[{"authorName":"刘含莲","id":"021bac82-321a-4671-bfca-1810ff94b106","originalAuthorName":"刘含莲"},{"authorName":"黄传真","id":"d3bae562-ea9d-4f8f-9cd5-1b9def465940","originalAuthorName":"黄传真"},{"authorName":"王随莲","id":"7e06490f-d1cc-4574-8c69-efe539a87741","originalAuthorName":"王随莲"},{"authorName":"孙静","id":"c4b90630-424b-464a-ae02-448a01bcaa9d","originalAuthorName":"孙静"},{"authorName":"何林","id":"507e32cc-4d77-4ddd-9386-5a7a5bb83c48","originalAuthorName":"何林"},{"authorName":"邹斌","id":"f312320c-e5ed-480e-87e1-10e8a85d050e","originalAuthorName":"邹斌"},{"authorName":"艾兴","id":"69a26eec-92bc-4d28-aac1-b430b8769c59","originalAuthorName":"艾兴"}],"doi":"10.3969/j.issn.1000-3738.2004.02.012","fpage":"38","id":"4f7ae449-fdf0-44dc-a2f0-64402560946a","issue":"2","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"9f75b449-66eb-4348-a988-f921e7c37330","keyword":"纳米复相陶瓷","originalKeyword":"纳米复相陶瓷"},{"id":"4999271d-c10f-49f7-9664-0e8b4328f60f","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"352bd9df-eccc-4698-bbcf-8fdae8c6e3a2","keyword":"纳米材料","originalKeyword":"纳米材料"}],"language":"zh","publisherId":"jxgccl200402012","title":"纳米复相陶瓷力学性能的研究进展","volume":"28","year":"2004"},{"abstractinfo":"2011年8日下午,何梁何利基金2011年度颁奖大会在京举行。我国高性能计算机领域杰出科学家、国防科技大学杨学军教授荣获“科学与技术成就奖”,丁伟岳等35人获“科学与技术进步奖”,吴朝晖等15人获“科学与技术创新奖”。中共中央政治局委员、国务委员刘延东向大会发来贺信,全国人大常委会副委员长桑国卫、全国政协副主席万钢出席会议并为获奖代表颁奖。何梁何利基金评选委员会主任朱丽兰向大会作工作报告。","authors":[],"doi":"","fpage":"45","id":"f37cc6ef-fc18-4992-bf12-87f4f2454c06","issue":"11","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"fb622aa9-b734-4f1c-b64e-92e6a4a88f1a","keyword":"科学家","originalKeyword":"科学家"},{"id":"6423a5d0-9de7-4a39-88fa-566072fd7e5d","keyword":"基金","originalKeyword":"基金"},{"id":"e733528d-7ae2-4e1f-b51c-af533f427e80","keyword":"中共中央政治局","originalKeyword":"中共中央政治局"},{"id":"8f9e518a-8e11-4218-a7b3-3c4611f804f7","keyword":"全国人大常委会","originalKeyword":"全国人大常委会"},{"id":"cddcb0f8-f641-4940-8dfd-f61da6f88936","keyword":"突出","originalKeyword":"突出"},{"id":"9ec15a38-d48c-406e-bf20-bd087ed406a0","keyword":"国防科技大学","originalKeyword":"国防科技大学"},{"id":"23458c7c-6c4e-4e81-b7cd-71807927d295","keyword":"计算机领域","originalKeyword":"计算机领域"},{"id":"b6a04d71-3662-490c-8d43-bef3fa71c865","keyword":"科学与技术","originalKeyword":"科学与技术"}],"language":"zh","publisherId":"zgcljz201111011","title":"2011年度何梁何利基金获奖科学家年轻化突出","volume":"30","year":"2011"},{"abstractinfo":"以氨水为催化剂,通过水解正硅酸乙酯制备了乳白色二氧化硅溶胶,采用静电自组装薄膜技术制备了聚电解质/二氧化硅复合薄膜,并通过热处理制备了二氧化硅薄膜.采用透射电镜、红外光谱仪、721分光光度计对二氧化硅溶胶和薄膜进行了分析.","authors":[{"authorName":"许标","id":"1369997e-c7cf-4d1c-ae6a-cac64a059ce6","originalAuthorName":"许标"},{"authorName":"许丕池","id":"df15660d-32fb-4b69-ba40-8f530f73cb37","originalAuthorName":"许丕池"},{"authorName":"何林","id":"95a6f494-781d-4009-a2ed-dfe1fb1cabc8","originalAuthorName":"何林"},{"authorName":"何方方","id":"b81a29ae-0561-44ac-bd7f-359b2c61d397","originalAuthorName":"何方方"}],"doi":"","fpage":"131","id":"34fd47de-e22e-4989-9464-7a91ece7dfd2","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"01e4dae1-8fce-41b8-ac78-ac0c613047e0","keyword":"二氧化硅","originalKeyword":"二氧化硅"},{"id":"4749329d-391f-40e4-a4bb-a424e0cabe19","keyword":"溶胶","originalKeyword":"溶胶"},{"id":"fe0b378d-7874-4297-a95c-35e922b966a7","keyword":"静电自组装","originalKeyword":"静电自组装"},{"id":"a0e45952-e045-448b-9ac6-1674b260c475","keyword":"薄膜","originalKeyword":"薄膜"}],"language":"zh","publisherId":"cldb200511036","title":"二氧化硅溶胶及其自组装薄膜的制备","volume":"19","year":"2005"},{"abstractinfo":"介绍了人工神经网络的特点及其在陶瓷材料设计中的应用,结合MATLAB(MATrixLABoratory)中的人工神经网络工具箱,重点探讨了人工神经网络在Al2O3-TiC复合陶瓷设计中的应用,建立了组分配比、粒度和复合陶瓷材料力学性能之间的非线性映射关系,优化出了TiC的体积分数及粒度范围.","authors":[{"authorName":"张蕾","id":"d71fd795-364e-4212-8bf0-81713ee55c22","originalAuthorName":"张蕾"},{"authorName":"黄传真","id":"126d500f-969d-4fc9-bf58-634c7fa51a04","originalAuthorName":"黄传真"},{"authorName":"何林","id":"3004e08c-3704-46db-ada1-963078a25f62","originalAuthorName":"何林"},{"authorName":"方斌","id":"59eca86a-73fc-47e5-9dba-97ee30d092c3","originalAuthorName":"方斌"},{"authorName":"李兆前","id":"cf5a98b2-af26-46b5-a3c0-706f0e04f897","originalAuthorName":"李兆前"},{"authorName":"艾兴","id":"3eefaba4-1902-4cb4-8542-feec6104fa00","originalAuthorName":"艾兴"}],"doi":"10.3969/j.issn.1000-3738.2002.11.003","fpage":"7","id":"363645d7-b183-4657-972c-5e45db84518e","issue":"11","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"b0573968-344d-4983-bab0-97e51c6eeead","keyword":"Al2O3-TiC复合陶瓷","originalKeyword":"Al2O3-TiC复合陶瓷"},{"id":"f0c7b0fe-29c6-4c59-ae69-a09533144280","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"a0a2ae76-ad4a-473a-a774-3cb348fff120","keyword":"MATLAB","originalKeyword":"MATLAB"},{"id":"f546db36-ebc3-4f19-93af-0fbe56677418","keyword":"陶瓷材料设计","originalKeyword":"陶瓷材料设计"}],"language":"zh","publisherId":"jxgccl200211003","title":"人工神经网络在Al2O3-TiC复合陶瓷设计中的应用","volume":"26","year":"2002"},{"abstractinfo":"对研制的Ti(C,N)基金属陶瓷材料的力学性能进行了测试和Weibull统计分析.研究表明,该材料具有良好的力学性能;材料的抗弯强度、断裂韧度和维氏硬度均服从Weibull分布,力学性能的变异系数小,性能稳定;抗弯强度的Weibull系数高,材料的可靠性高.","authors":[{"authorName":"何林","id":"c84e89a5-02c4-43a1-ad36-ad7e17d1e820","originalAuthorName":"何林"},{"authorName":"黄传真","id":"bc256d35-b73e-402a-ab4d-72443a51dc47","originalAuthorName":"黄传真"},{"authorName":"孙静","id":"613b0f10-755c-4304-be4a-f6dabc893ce1","originalAuthorName":"孙静"},{"authorName":"刘含莲","id":"ed59c383-b9d6-4a7e-aa5b-31f892502234","originalAuthorName":"刘含莲"},{"authorName":"王随莲","id":"afc1d767-ea63-4fb9-84da-4b1cbd72e709","originalAuthorName":"王随莲"}],"doi":"10.3969/j.issn.1000-3738.2003.10.012","fpage":"34","id":"4b21eabf-1346-4d88-95a3-bb294bca77a8","issue":"10","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"e9d77c1d-4085-495b-837f-13582e4f1a78","keyword":"Ti(C,N)基金属陶瓷","originalKeyword":"Ti(C,N)基金属陶瓷"},{"id":"bbab4836-4803-4e21-b7a6-0e3f9a660fc4","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"3a593a34-0b41-4058-bf09-8c71479b7f4a","keyword":"Weibull分布","originalKeyword":"Weibull分布"}],"language":"zh","publisherId":"jxgccl200310012","title":"Ti(C,N)基金属陶瓷力学性能的统计学研究","volume":"27","year":"2003"},{"abstractinfo":"研究了硬脂酸对钛酸钾晶须的改性效果,用处理了的钛酸钾晶须增强坡缕石复合制备摩擦材料,研究复合两种矿物纤维的增强机制.发现15%(质量分数)的钛酸钾晶须添加量在复合材料中分散不易均匀,摩擦因数波动较大,不利于复合材料的摩擦性能;13%以下的钛酸钾添加量对复合材料的摩擦因数的影响不大;10%的钛酸钾晶须添加量制备的复合材料磨损率最低,比未添加的坡缕石复合材料,耐磨性提高了27%,对改善坡缕石的耐磨性有显著的作用,特别是250℃以上的高温阶段的耐磨性得到显著改善.","authors":[{"authorName":"程尧","id":"1563678e-a93b-4e95-a3f1-4edf06a6ea05","originalAuthorName":"程尧"},{"authorName":"何林","id":"7460dab8-162f-490f-af35-50d8b3131c09","originalAuthorName":"何林"},{"authorName":"周元康","id":"244f8a0e-4d58-49a0-8b2f-aaaad984931b","originalAuthorName":"周元康"},{"authorName":"阎建伟","id":"cf47c452-bcfc-4daa-8751-5eb26082548c","originalAuthorName":"阎建伟"}],"doi":"10.3969/j.issn.1001-4381.2010.11.014","fpage":"57","id":"4c589bc8-69de-435b-8d04-512b764b6d0b","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"146ad9b5-d009-4ba1-98ea-048908a95fb0","keyword":"硬脂酸","originalKeyword":"硬脂酸"},{"id":"720d9e8c-ade7-487c-b889-6f06cafad815","keyword":"钛酸钾晶须","originalKeyword":"钛酸钾晶须"},{"id":"bab8b79e-188b-4d8d-bb44-d9d6c53726dc","keyword":"坡缕石","originalKeyword":"坡缕石"},{"id":"857017f3-9209-48ce-ac35-fd9f5bbee8d6","keyword":"摩擦","originalKeyword":"摩擦"}],"language":"zh","publisherId":"clgc201011014","title":"硬脂酸处理钛酸钾晶须对坡缕石纤维树脂摩擦材料摩擦性能的研究","volume":"","year":"2010"},{"abstractinfo":"采用简单的溶液还原方法,以聚乙烯吡咯烷酮(PVP,MW=58,000)作为高分子表面修饰剂,用水合肼(50%)作为还原剂,经回流处理,成功地制备出了分散性较好的钴纳米颗粒.利用XRD、TEM、SQUID等实验方法对产物的形貌、物相及磁性进行了表征.结果表明,产物为六方结构.其饱和磁化强度为153 emu/g,~1.62μB/Co,是体相材料的饱和磁矩的95%,其矫顽力为5174 A·m-1.此方法的优点在于反应条件温和、成本较低,重复性强、产率高且宜于控制.","authors":[{"authorName":"梁芳","id":"3fff1444-ea3a-4055-b973-f8457a643789","originalAuthorName":"梁芳"},{"authorName":"贺加欣","id":"26d8ad8b-5cfb-457c-aa89-98d34194e427","originalAuthorName":"贺加欣"},{"authorName":"曹先仲","id":"0bb85670-fa17-4b8f-ab8a-4b92e21896c0","originalAuthorName":"曹先仲"},{"authorName":"郭林","id":"2717ab15-e898-4590-9bed-83520f01c833","originalAuthorName":"郭林"},{"authorName":"何林","id":"8c5e4b6d-95d3-4be3-b190-5eba0bc1425a","originalAuthorName":"何林"},{"authorName":"陈晋平","id":"ac2c264c-450e-44f1-9e40-8ce28b5e08c6","originalAuthorName":"陈晋平"}],"doi":"","fpage":"760","id":"5145adbe-000b-4313-b092-70aaaa175855","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1fd1c22b-54e6-43c1-afa3-5af587e4c079","keyword":"钴纳米颗粒","originalKeyword":"钴纳米颗粒"},{"id":"9a322b1b-f697-4e24-9c7d-4b93d234078a","keyword":"磁性","originalKeyword":"磁性"},{"id":"85b6167d-beda-46a5-9ae2-f89860ab3d69","keyword":"溶液还原法","originalKeyword":"溶液还原法"}],"language":"zh","publisherId":"xyjsclygc2007z2220","title":"钴纳米颗粒的制备及其表征","volume":"36","year":"2007"},{"abstractinfo":"采用X射线衍射(XRD)、光学显微镜(OM)、扫描电镜(SEM)及材料试验机等分析测试手段,研究了TiB2含量对原位合成TiB2/Fe基复合材料的微观结构及拉伸性能的影响.试验结果表明,增强相TiB2颗粒均匀分布于α-Fe基体中,对基体有显著的强化效果;随着TiB2含量的增加,复合材料抗拉和屈服强度也随之增加,而延伸率呈下降趋势.","authors":[{"authorName":"曹卉","id":"8f02053d-dbfa-46c8-aef0-9b99788b952d","originalAuthorName":"曹卉"},{"authorName":"刘颖","id":"0ffe69da-aa40-4b43-a317-faaced0ff899","originalAuthorName":"刘颖"},{"authorName":"李兵红","id":"e3ec6bc9-cd05-4e60-9eab-083115f0e8c0","originalAuthorName":"李兵红"},{"authorName":"何林","id":"42af6cd4-3933-4abd-a803-624a05ee1c7b","originalAuthorName":"何林"},{"authorName":"李军","id":"ce9dbb56-e965-4dc7-8b39-2e288780a68c","originalAuthorName":"李军"},{"authorName":"高升吉","id":"845b778b-c0c7-403b-ae20-67e99c57932c","originalAuthorName":"高升吉"}],"doi":"","fpage":"11","id":"84960bf6-5bd0-47df-9873-b0cdbb9c6b18","issue":"4","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"fe4fdfdd-465a-4631-bf77-49f409fe6357","keyword":"原位合成","originalKeyword":"原位合成"},{"id":"9a8dcd7f-fdcd-4507-ab95-9e3e5f95f2db","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"},{"id":"27e336ca-6fa2-4173-9543-7ee61e83c75f","keyword":"TiB2","originalKeyword":"TiB2"},{"id":"0543ae44-cea0-4b62-bf0d-170f68738918","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"5b8f5b69-4ad1-4b90-ac15-6cc0cabecf44","keyword":"拉伸性能","originalKeyword":"拉伸性能"}],"language":"zh","publisherId":"gtft200904003","title":"TiB2含量对原位合成TiB2/Fe基复合材料力学性能的影响","volume":"30","year":"2009"}],"totalpage":23,"totalrecord":224}