潘宏程
,
蒋治良
,
袁伟恩
,
唐国顺
,
罗杨合
应用化学
doi:10.3969/j.issn.1000-0518.2003.07.011
采用双池法研究了pH=7.4 Tris-HCl-丙酮(或乙醇)-HSA体系的荧光光谱及共振散射光谱. 实验表明,丙酮对HSA在325 nm处的荧光产生猝灭效应,其根本原因是丙酮的分子吸收. 乙醇使HSA在325 nm处的荧光增强,系由于乙醇破坏了HSA的高级结构,Trp残基暴露于HSA的表面并形成氢键所致. 在pH=4.8 NaAC-HAC缓冲溶液中,丙酮体积分数大于30%或乙醇体积分数大于40%时, HSA分子因高级结构被破坏而互相聚集,导致470 nm处的共振散射急剧增强.
关键词:
丙酮
,
乙醇
,
人血清白蛋白
,
荧光光谱
,
共振散射光谱
罗杨合
,
蒋治良
,
袁伟恩
,
潘宏程
,
唐国顺
应用化学
doi:10.3969/j.issn.1000-0518.2003.09.004
在pH=7.40 Tris缓冲溶液中,硅钨杂多酸(SiW)在260 nm有1吸收峰;人血清白蛋白(HSA)在350 nm处有1荧光峰. 当HSA与SiW存在时,二者形成粒径约50 nm的缔合纳米微粒,导致470 nm处瑞利散射(RS)光信号增强及350 nm处荧光猝灭. RS光谱和透射电镜研究结果表明,HSA-SiW缔合纳米微粒和界面的形成是导致体系荧光猝灭和RS增强的根本原因.
关键词:
硅钨杂多酸
,
人血清白蛋白
,
缔合纳米微粒
,
荧光猝灭
,
瑞利散射
潘宏程
,
蒋治良
,
袁伟恩
,
黄思玉
应用化学
doi:10.3969/j.issn.1000-0518.2005.03.012
采用共振散射光谱和透射电镜研究了金纳米粒子. 结果表明,粒径为10 nm、Au的质量浓度为0~35.4×10-6 g/mL的金纳米粒子溶液在525 nm处分别产生1个共振吸收峰和1个共振散射峰. 粒径为50 nm、Au的质量浓度为0~17.7×10-6 g/mL的金纳米粒子溶液在530 nm处分别产生1个共振吸收峰和1个共振散射峰. 当金纳米粒子浓度较高时,存在共振散射峰红移和猝灭现象. 从光子与纳米粒子界面超分子能带电子作用及光子与纳米粒子之间发生多次散射的角度出发,探讨了金纳米粒子共振散射峰和共振吸收峰的对应关系及其共振散射峰红移和猝灭的机理.
关键词:
金纳米粒子
,
共振散射
,
共振吸收