张军红
,
金永龙
,
沈峰满
,
苏小利
钢铁研究学报
高炉铁水的硅含量是描述铁水质量的一个重要指标.为了在出铁之前了解铁水中硅含量的高低,建立预测模型是必要的.结合遗传算法(GA)和BP神经网络,建立了优化的GA-BP预测分析模型,从某高炉选取生产数据进行学习和预测.运行结果表明,模型具有较高的预测精度,当要求绝对误差为±0.05时,命中率可达70%;绝对误差为±0.08时,命中率可达92.3%.同时,应用该模型分析回归了高炉风量、热风压力、富氧量与铁间料批数等参数与铁水硅含量之间的相关关系,其结果与高炉冶炼理论基本吻合,可为高炉生产提供一定的指导.
关键词:
遗传算法
,
BP神经网络
,
硅含量
,
预测