冯培忠
,
苏健
,
周亚国
,
王建忠
,
葛渊
,
刘章生
,
王晓虹
稀有金属材料与工程
以Ti和Al2种粉末为原料,采用粉末压制-无压烧结技术制备了TiAl多孔材料,并对其宏观形貌、相组成、孔结构、反应机制和孔隙形成机理进行了分析.结果表明:Ti-Al粉末压坯在烧结过程中发生了明显的体积膨胀,多孔材料的总孔隙率为49.88%~57.53%,开孔率为47.60%~56.15%.多孔材料主要由连续的颗粒骨架、骨架之间的大孔隙和骨架内部的小孔隙构成,孔隙主要来自粉末压坯颗粒之间存在的原始大孔隙、无压烧结过程中先熔化的Al颗粒在毛细作用下发生流动形成的原位大孔隙和析出过程在Ti-Al产物颗粒之间形成的小孔隙.Ti-Al多孔材料主要由TiAl3单相构成,无压烧结过程中Ti-Al之间发生了热爆反应.
关键词:
多孔材料
,
金属间化合物
,
无压烧结
,
TiAl
宋桂林
,
马桂娟
,
张卉
,
苏健
,
陈晨
,
常方高
人工晶体学报
采用快速液相烧结法制备Bi1-xEuxFe1-yCoyO3(x=0、0.01、0.05、0.1;y=0、0.01、0.05、0.1)陶瓷样品,研究Eu、Co共掺杂对BiFeO3介电性能、铁磁性和磁电耦合效应的影响.利用X射线衍射仪对晶体结构进行表征,结果表明:所有样品的主衍射峰与纯相BiFeO3相吻合且具有良好的晶体结构.当Co掺杂量大于0.05时,Bi1-xEuxFe1-yCoyO3发生结构相变.当f=1000 Hz时,Bi0.99 Eu0.01Fe0.99 Co0.01O3样品的介电常数是BiFeO3的12倍,而介电损耗最小.磁测量表明:室温下,除了BiFeO3和Bi1-xEuxFe0,99 Co0.01O3以外,所有样品具有较强的铁磁特性.在20kOe磁场作用下,Bi1-xEuxFe1-yCoyO3样品呈现饱和的磁滞回线,Bi0.Eu01Fe0.9Co0.1O3样品的剩余磁化强度(Mr=0.984 emu/g)是BiFeO3的328倍.在外加磁场(0~0.4 kOe)作用下,样品的磁电耦合效应(ME)随着Eu3+和Co3+掺杂量的增加而增大,Bi0.95Eu0.05 Fe0.95Co0.05O3呈现较强的磁电耦合效应,在4.5 kOe磁场的作用下,其ME值已达到4.37%.样品磁性增强的主要是Eu3+的4f电子与Fe3+或Co3+的3d电子自旋相互作用及样品中存在局域的Fe-O-Co磁耦合两者共同作用的结果.
关键词:
BiFeO3
,
介电性能
,
磁滞回线
,
磁电耦合
宋桂林
,
苏健
,
周晓辉
,
杨海刚
,
王天兴
,
常方高
人工晶体学报
采用快速液相烧结法制备Bi0.95 Sm0.05Fe1-x Cox O3(x=0、0.05、0.1)陶瓷样品,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、振动样品磁强计(VSM)对其结构、形貌和磁性进行了测量与分析.结果表明:所有样品的主衍射峰与纯相BiFeO3相吻合且具有良好的晶体结构,样品晶粒的大小随着Sm3+、Co3+掺杂而变小,其晶粒尺寸在1~5 μm; Sm3+、Co3+共掺杂有效地减小BiFeO3陶瓷的漏导电流,漏导电流密度下降1~2个数量级;所有样品在磁场为1000 Oe作用下具有完整的的磁滞回线,呈显出较弱的铁磁性.随着掺杂量x的增加,样品的铁磁性显著提高.当x为0.1时,样品具有较好的的铁磁特性.这可以理解为Sm3+、Co3+的掺杂,破坏BiFeO3样品中原有的反铁磁结构,形成一种新的亚铁磁结构,导致掺杂Co3+的样品磁性大幅度增强.
关键词:
多铁材料
,
磁滞回线
,
漏电流