唐江凌
,
蔡从中
,
肖婷婷
,
皇思洁
材料热处理学报
根据Zr-2合金的晶粒尺寸在不同热工艺参数(变形温度、变形程度、变形速率)下的12组实测数据,应用基于粒子群算法寻找最优参数的支持向量回归方法,建立了合金晶粒尺寸的预测模型.通过与模糊神经网络模型的结果进行比较,结果表明:基于相同的试验样本,支持向量回归预测模型的平均绝对误差和平均绝对百分误差都比模糊神经网络预测模型的小,而复相关系数大.这说明,支持向量回归预测模型预测精度比模糊神经网络模型要高,是简单而精确的建模方法,可用于优化热加工参数.
关键词:
支持向量机
,
模糊神经网络
,
粒子群择优
,
Zr-2合金
,
晶粒尺寸
唐江凌
,
蔡从中
,
皇思洁
,
肖婷婷
航空材料学报
doi:10.3969/j.issn.1005-5053.2012.5.016
为了研究不同时效工艺下Al-Cu-Mg-Ag合金强度性能,根据实测数据集,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)方法,建立了SVR预测模型.模型以Al-Cu-Mg-Ag合金时效温度与时效时间为输入,合金的抗拉强度、屈服强度为输出.经过与BP神经网络模型进行比较,结果表明:对于相同的训练样本和检验样本,支持向量回归模型比BP神经网络模型具有更高的预测精度.
关键词:
Al-Cu-Mg-Ag合金
,
强度
,
支持向量回归
,
粒子群优化
,
回归分析
皇思洁
,
蔡从中
,
曾庆文
功能材料
doi:10.3969/j.issn.1001-9731.2013.14.022
根据脉冲激光沉积(PLD)法在单晶Si试样表面沉积制备多层TiN/AlN硬质膜实验数据,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)方法,建立不同工艺参数下沉积的TiN/AlN多层膜的A1N膜厚及TiN薄膜硬度的SVR预测模型.在相同的训练与测试样本集下,将SVR所得的AlN膜厚预测值与免疫径向基函数(IRBF)神经网络的计算结果进行比较.结果表明,SVR模型训练和预测结果的平均绝对百分误差要比IRBFNN模型的小,其预测精度更高,预测效果更好.应用SVR的TiN薄膜硬度模型对PLD法沉积TiN薄膜的工艺参数进行了优化,分析了多因素对PLD法沉积TiN薄膜硬度的交互作用和影响.该方法可为人们利用PLD法沉积TiN/AlN多层功能薄膜提供科学的理论指导,具有重要的理论意义和实用价值.
关键词:
脉冲激光沉积
,
TiN/AlN硬质多层膜
,
支持向量回归
,
回归分析
,
工艺优化