{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了由我国自行研制的Cr-Ni-Co-Mo系高强度马氏体时效不锈钢的强韧化机理.结果表明,该钢在535℃时效强度可达1 940 Mpa,KIC=141 Mpa·平方根m,此时钢中析出的大量、弥散、细小的Fe2Mo型Laves相是保持超高强度的主要原因;在纤细的马氏体板条界上有少量的残余奥氏体使钢具有较高的韧性.该钢具有优良的综合性能,特别适合于制造新一代高强高韧、承力的耐海洋环境腐蚀结构件,并在航天及航空领域潜在着应用前景.","authors":[{"authorName":"刘振宝","id":"1c65c61c-208c-45d1-9173-b68c6d5c5f50","originalAuthorName":"刘振宝"},{"authorName":"杨志勇","id":"a29878fe-e813-446a-9c35-7aa0c9978ae4","originalAuthorName":"杨志勇"},{"authorName":"雍岐龙","id":"1c893cc2-4c0d-4d6c-8f2c-8e913983de92","originalAuthorName":"雍岐龙"},{"authorName":"梁剑雄","id":"27164728-6704-439a-b1a3-d95409e0684c","originalAuthorName":"梁剑雄"},{"authorName":"","id":"bcc63af6-6411-40a8-a9e7-a4da3744af47","originalAuthorName":"孙永庆"},{"authorName":"李文辉","id":"ed5b0d2a-442e-416b-ac59-a40e9830b103","originalAuthorName":"李文辉"},{"authorName":"宋诚一","id":"424362de-3e4f-4bfe-9ca3-4975dfe94d04","originalAuthorName":"宋诚一"}],"doi":"","fpage":"27","id":"09d7d5cf-5564-4615-8dba-48b5fd2e49b7","issue":"5","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"6c081218-698b-4875-ac64-cf772ec5f128","keyword":"马氏体时效不锈钢","originalKeyword":"马氏体时效不锈钢"},{"id":"9d5ee9ea-1fac-46e8-9254-20e493f1a206","keyword":"强韧化机理","originalKeyword":"强韧化机理"},{"id":"1a112ed6-9f75-4376-942d-6b26445bf037","keyword":"析出相","originalKeyword":"析出相"}],"language":"zh","publisherId":"gtyjxb200805007","title":"新型Cr-Co-Ni-Mo系马氏体时效不锈钢的强韧化机理","volume":"20","year":"2008"},{"abstractinfo":"研制出一种R≥1900 MPa的铬-镍-钴-钼系大规格棒材((φ)200 mm)超高强度马氏体时效不锈钢,通过研究热处理工艺对八种不同成分的铬-镍-钴-钼系马氏体时效不锈钢力学性能的影响,进一步优化了合金成分.结果表明:优化成分后得到一种高强(Rm=1940 MPa)、高韧(AKU2=55J,KIC=104 MPa·(√)m)的马氏体时效不锈钢.","authors":[{"authorName":"刘振宝","id":"343cfc70-d77f-471d-9540-20726d5f948f","originalAuthorName":"刘振宝"},{"authorName":"杨志勇","id":"33d55138-02e5-4b43-bfbf-115fbd2b9482","originalAuthorName":"杨志勇"},{"authorName":"雍歧龙","id":"b3601245-2a2b-40d1-88c5-e2282884f57b","originalAuthorName":"雍歧龙"},{"authorName":"梁剑雄","id":"6c4b1675-0955-480c-b19a-cf5ec424b6b6","originalAuthorName":"梁剑雄"},{"authorName":"","id":"0bc860ab-8ea3-4225-b3f1-da62f77042dc","originalAuthorName":"孙永庆"},{"authorName":"李文辉","id":"509c4281-e5d8-4d7f-b658-542a1ffcb29b","originalAuthorName":"李文辉"},{"authorName":"卢伦","id":"0b623693-72ff-49d7-bd00-56abfc55c181","originalAuthorName":"卢伦"}],"doi":"10.3969/j.issn.1000-3738.2008.03.015","fpage":"48","id":"f51a4e6e-9d11-466b-b23a-050cf153701b","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"ccecb25c-39df-47b6-b2bf-627ba7c607f7","keyword":"马氏体时效不锈钢","originalKeyword":"马氏体时效不锈钢"},{"id":"1258970b-1610-4631-bd68-454fbb7f74de","keyword":"析出相","originalKeyword":"析出相"},{"id":"3bb2b021-f8c7-44fa-aaab-985aa07c248b","keyword":"超高强度","originalKeyword":"超高强度"}],"language":"zh","publisherId":"jxgccl200803015","title":"1 900 MPa级超高强度不锈钢的研制","volume":"32","year":"2008"},{"abstractinfo":"","authors":[],"doi":"","fpage":"594","id":"a8f95271-0568-4acd-865c-8218cdeb0825","issue":"9","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"64725150-046a-4256-8cf4-c812b9b26e4d","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"zgcljz201409011","title":"专栏特约编辑赵","volume":"","year":"2014"},{"abstractinfo":"通过新的成分设计和综合应用超洁净化技术和金属间化合物及碳化物的时效沉淀强化技术,成功设计了一种新型的超高强度不锈钢。该钢的抗拉强度Rm可达1940 MPa,KIC大于90 MPa·m1/2,并且具有较高的疲劳性能及高温力学性能,在海洋大气及海水全浸的环境下,该钢的耐腐蚀性能与15-5PH不锈钢相当,且明显优于同强度级别的Aermet100钢。","authors":[{"authorName":"刘振宝","id":"eb1f5dcf-5ee9-4dae-b309-6c22d85469b2","originalAuthorName":"刘振宝"},{"authorName":"梁剑雄","id":"65df325b-a6e2-4ff9-8b8e-b923b0b8ecdb","originalAuthorName":"梁剑雄"},{"authorName":"李文辉","id":"8259720f-cdf0-47a7-a90e-ad962a8424e8","originalAuthorName":"李文辉"},{"authorName":"张秀丽","id":"e3804dd4-d9ad-4543-84b8-9fd4d297623c","originalAuthorName":"张秀丽"},{"authorName":"","id":"6a3c30d8-2623-42be-a637-e7f3be7c1a94","originalAuthorName":"孙永庆"},{"authorName":"王长军","id":"22a72011-2cf3-4cf6-9464-3fbe092f039f","originalAuthorName":"王长军"}],"doi":"10.13228/j.boyuan.issn0449-749x.20150090","fpage":"57","id":"03abd723-6380-419f-bb0c-3efcbefa9f54","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"ddb79049-8f59-43f4-8918-ac3c1fdec37f","keyword":"超高强度不锈钢","originalKeyword":"超高强度不锈钢"},{"id":"05f806e3-9351-40f9-a159-84204c5c03f0","keyword":"超高洁净度","originalKeyword":"超高洁净度"},{"id":"aa11528a-6c99-4a0e-b837-db1b57925d97","keyword":"相变控制","originalKeyword":"相变控制"},{"id":"17474638-1e8f-4438-a699-71c54b2ad4b7","keyword":"耐海洋环境腐蚀","originalKeyword":"耐海洋环境腐蚀"}],"language":"zh","publisherId":"gt201506012","title":"耐海洋环境腐蚀高强度不锈钢的设计与性能","volume":"","year":"2015"},{"abstractinfo":"用200kg真空感应炉冶炼3炉403不锈钢,锻成φ120mm圆棒,进行950~1000℃淬火油冷、720~750℃回火油冷的热处理.研究了Ni、N等元素含量及热处理工艺对该钢组织、力学性能和磁性能的影响.试验结果表明,添加Ni,N元素可以显著提高试验钢的力学性能、导磁性能,特别是冲击值等塑韧性指标;添加N元素可以明显提高试验钢在低磁场强度下的磁感应强度,而在高磁场强度下添加Ni元素更加有利.并对Ni,N元素的强化机制也进行了一定探讨,对此类钢在转子部件的应用具有一定的指导作用.","authors":[{"authorName":"","id":"017dc205-eca1-4fcd-9c60-ca045905acce","originalAuthorName":"孙永庆"},{"authorName":"梁剑雄","id":"2ccfc3b0-9e9e-469a-a727-52c580d02495","originalAuthorName":"梁剑雄"},{"authorName":"国强","id":"f346a224-12b5-4908-bb73-444afd87ee5f","originalAuthorName":"孙国强"},{"authorName":"杨志勇","id":"008be669-44c6-4a1b-99d3-3fb4e46ec363","originalAuthorName":"杨志勇"},{"authorName":"李文辉","id":"698c7999-3a43-4682-80fc-59e42cb627f3","originalAuthorName":"李文辉"},{"authorName":"张丽娜","id":"98da171a-51ee-4976-8c9a-27ad2d406cbc","originalAuthorName":"张丽娜"}],"doi":"","fpage":"66","id":"2fe9cf53-f401-4bcc-8f8e-0fad48862020","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1767d2c2-68d0-4efb-8966-e9ddec22d0c9","keyword":"403钢","originalKeyword":"403钢"},{"id":"b3c033c2-9170-4f6a-9643-78dded6d1c9c","keyword":"转子用钢","originalKeyword":"转子用钢"},{"id":"84f883d7-1973-48e6-8185-a2f64a079e29","keyword":"控氮","originalKeyword":"控氮"},{"id":"f919c4e5-0fe0-4403-9de7-7732ee64a871","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"1ef83d11-2214-4ede-a493-d15b17374735","keyword":"磁性能","originalKeyword":"磁性能"}],"language":"zh","publisherId":"gt201401013","title":"化学成分和热处理工艺对转子用403不锈钢组织和性能的影响","volume":"49","year":"2014"},{"abstractinfo":"研究了热处理对采用电炉+炉外精炼(LF)+电渣重熔冶炼的工业用和实验室50 kg真空感应炉+电渣重熔冶炼的试验用0Cr12Mn5Ni4Mo3Al高强度不锈钢带(0.8 mm和0.5 mm)的力学性能和组织的影响。结果表明,实验室得到的钢材更为洁净,组织中保留有合理的残余奥氏体含量;与采用同样热处理制度的工业钢带相比,在保持或提高伸长率的同时,抗拉强度提高50~85 MPa,杯突值提高1~3 mm;适当调节Cr、Ni的当量比以及采用合理的锻造、轧制工艺可以消除钢带组织中δ铁素体的不利影响,更大限度发挥材料潜力。","authors":[{"authorName":"","id":"25a481bf-6940-442e-be42-60a8e8f872fa","originalAuthorName":"孙永庆"},{"authorName":"梁剑雄","id":"a69c9d3d-eb9d-4bc5-a804-1ef547580813","originalAuthorName":"梁剑雄"},{"authorName":"杨志勇","id":"00c48e96-8b28-4803-a25b-1d50193b5fd6","originalAuthorName":"杨志勇"},{"authorName":"宋为顺","id":"9333eef5-dc9e-4a87-bbd6-bdc5d51081ac","originalAuthorName":"宋为顺"}],"categoryName":"|","doi":"","fpage":"76","id":"41c33ced-cd74-459f-8b4d-10b4f073fddb","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"628f3e04-1afb-4b52-a656-bf82c7968c68","keyword":"0Cr12Mn5Ni4Mo3Al;高强不锈钢;时效温度;力学性能","originalKeyword":"0Cr12Mn5Ni4Mo3Al;高强不锈钢;时效温度;力学性能"}],"language":"zh","publisherId":"0449-749X_2009_1_8","title":"冶炼方法和热处理工艺对0Cr12Mn5Ni4Mo3Al 高强不锈钢带力学性能和组织的影响","volume":"44","year":"2009"},{"abstractinfo":"为满足飞行器用材需求,进一步提高AM355不锈钢的强度和硬度,研究了3种成分的使用真空感应+电渣重熔工艺冶炼、经锻造成型的φ80 mm AM355不锈钢棒.钢棒经不同温度淬火后,再进行深冷+回火处理并测试其力学性能.试验结果表明,在相近的w(Creq)/w(Nieq)下,钼含量较高的不锈钢棒容易得到较高的强度和硬度,并具有一定的塑韧性.经最佳热处理工艺(1000℃×1h空冷+(-70℃)×8h+450℃×2h空冷+200℃×2h空冷)处理后,该AM355不锈钢棒的强度和硬度有大幅度提高,抗拉强度提高约100MPa,硬度提高约HRC5.力学性能可达到:抗拉强度1 630 MPa、屈服强度1 380 MPa、伸长率16%、面缩率59%、冲击值51J、硬度50 HRC.对该AM355钢棒中碳化物的类型和析出行为进行了扫描电镜和透射电镜观察,探讨了强化机制.结论认为钼元素含量和淬火温度对AM355的强度和硬度影响较大.","authors":[{"authorName":"","id":"bb418b2c-cb3a-476d-9312-edf489575146","originalAuthorName":"孙永庆"},{"authorName":"梁剑雄","id":"0835a1ff-ec3c-45e4-becf-6a2f0bb42180","originalAuthorName":"梁剑雄"},{"authorName":"杨志勇","id":"c51a49d2-c4a9-491d-8956-fb28acab8c90","originalAuthorName":"杨志勇"},{"authorName":"李文辉","id":"bb33a409-f959-4e8a-b88b-58955b8b4e4f","originalAuthorName":"李文辉"},{"authorName":"张丽娜","id":"799bbc94-7cb3-4bb1-8ae1-66c99ecc4eeb","originalAuthorName":"张丽娜"}],"doi":"","fpage":"68","id":"8647b6c8-ddf1-414d-9c0e-014b851bc81e","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"055ad715-c434-4988-a3e6-d310084dc4fc","keyword":"AM355","originalKeyword":"AM355"},{"id":"7bb6cf73-aa36-4cd1-9f37-bc5591a62bd8","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"d9cdcb37-c459-43ff-95ba-129a2f969fa6","keyword":"热处理","originalKeyword":"热处理"},{"id":"2a8ce782-e262-4fa6-be56-41b41f531bfe","keyword":"高强度","originalKeyword":"高强度"},{"id":"7b1f5dab-f645-4bc0-85a7-0ec830a1c0d8","keyword":"强化机制","originalKeyword":"强化机制"}],"language":"zh","publisherId":"gt201305014","title":"化学成分和热处理对AM355不锈钢组织和力学性能的影响","volume":"48","year":"2013"},{"abstractinfo":"研究了改变热处理工艺对使用真空感应+电渣重熔工艺冶炼、经锻造成型的(o)80 mm AM355不锈钢棒的力学性能的改进及相关机理.试验结果表明,与传统热处理工艺(1 070℃×1h空冷+(-70℃)×8 h+200℃×2h空冷)相比,新的热处理工艺(1 000℃×1h空冷+(-70℃)×8 h+450℃×2h空冷+200℃×2h空冷)可使(o)80mmAM355不锈钢棒得到较高的强度和硬度,并保留一定的塑韧性.新的热处理工艺处理的AM355不锈钢棒的抗拉强度可提高120MPa、屈服强度可提高400MPa、硬度可提高5HRC,同时,冲击吸收功可保持大于40 J.对该钢棒经2种热处理工艺后产生的碳化物的类型和析出行为进行了观察研究之后指出,淬火温度对AM355不锈钢的晶粒度、碳化物类型及分布、残余奥氏体的转变都具有较大的影响,M23C6型碳化物的存在对钢的强化非常重要.","authors":[{"authorName":"","id":"80917645-2bce-446a-9485-ec1208572f8c","originalAuthorName":"孙永庆"},{"authorName":"梁剑雄","id":"9db290c7-94e6-4cd1-8a8f-d76243574063","originalAuthorName":"梁剑雄"},{"authorName":"杨志勇","id":"2941aab4-669c-4594-b8dd-55607160d8b9","originalAuthorName":"杨志勇"},{"authorName":"刘振宝","id":"d71dd715-2d26-47ab-bebd-1d36a631715d","originalAuthorName":"刘振宝"},{"authorName":"李文辉","id":"dadb0899-d1ab-4d6f-b2fe-00b834e6a4d2","originalAuthorName":"李文辉"},{"authorName":"张丽娜","id":"74e7a663-1836-4f09-8789-7a2a05af855a","originalAuthorName":"张丽娜"}],"doi":"10.13228/j.boyuan.issn0449-749x.20130656","fpage":"77","id":"8ff2cc0d-9a59-466d-b1be-4aa8a155145c","issue":"9","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1fa59c75-9c74-476e-81dc-6bcbf5c7d1cd","keyword":"AM355","originalKeyword":"AM355"},{"id":"35de4e59-5a4c-4237-a81a-b1457c1b72a7","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"83e137ea-6191-4e33-8afe-cc4e095dc3eb","keyword":"热处理","originalKeyword":"热处理"},{"id":"33469468-f598-4187-a56f-ca8ed0a73bc4","keyword":"高强度","originalKeyword":"高强度"},{"id":"8599bcc6-0545-41d5-8734-79a28d6d0545","keyword":"强化机制","originalKeyword":"强化机制"}],"language":"zh","publisherId":"gt201409014","title":"热处理工艺对AM355不锈钢力学性能的影响及机理","volume":"49","year":"2014"},{"abstractinfo":"研究了使用真空感应炉+电渣重熔工艺代替原有的电炉+炉外精炼(LF)+电渣重熔工艺对0Cr12Mn5Ni4Mo3Al高强度不锈钢不同规格棒材的力学性能和组织的影响。结果表明,使用新工艺得到的钢材更为洁净,组织中保留有适量的残余奥氏体;与旧工艺小规格棒材相比,新工艺得到的大规格棒材在保持或提高抗拉强度的同时,优化了屈强比,提高了塑韧性,冲击吸收功提高了40~60J;适当调节w(Cr)eq/w(Ni)eq比以及采用合理的锻造、轧制工艺,可以消除棒材组织中δ-铁素体的不利影响,更大限度地发挥材料潜力。","authors":[{"authorName":"","id":"5ab49250-12ff-447d-b1b2-427d584570c5","originalAuthorName":"孙永庆"},{"authorName":"梁剑雄","id":"769c392c-e7aa-4024-9dd2-07e44722bdc0","originalAuthorName":"梁剑雄"},{"authorName":"杨志勇","id":"4d7b2b81-959c-43b3-84b4-a17af6ec835f","originalAuthorName":"杨志勇"},{"authorName":"宋为顺","id":"a7a98932-a1ff-4c55-9f51-16b38342950c","originalAuthorName":"宋为顺"},{"authorName":"李文辉","id":"f6cb7b2d-a804-4f77-992d-6eb69cf57878","originalAuthorName":"李文辉"},{"authorName":"陈志强","id":"5053f619-1f0e-4c6a-8702-b0f77b6ba869","originalAuthorName":"陈志强"}],"doi":"","fpage":"86","id":"a06e3731-65ab-468d-a665-c3755c4bd9ff","issue":"11","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"a70c7392-ee71-4f20-ab1d-249fb200cbfd","keyword":"0Cr12Mn5Ni4Mo3Al","originalKeyword":"0Cr12Mn5Ni4Mo3Al"},{"id":"c30e243e-6dc4-4630-b137-b2321b960b1d","keyword":"高强不锈钢","originalKeyword":"高强不锈钢"},{"id":"d6871286-8c4d-4bcc-ba00-6db460056886","keyword":"时效温度","originalKeyword":"时效温度"},{"id":"3989fd54-1a0c-485c-9dff-3ea7a769115f","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gt201111020","title":"冶炼方法对0Cr12Mn5Ni4Mo3Al高强不锈钢棒材力学性能和组织的影响","volume":"46","year":"2011"},{"abstractinfo":"研究了热处理对采用电炉+炉外精炼(LF)+电渣重熔冶炼的工业用和实验室50 kg真空感应炉+电渣重熔冶炼的试验用0Cr12Mn5Ni4M03AI高强度不锈钢带(0.8 mm和0.5 mm)的力学性能和组织的影响.结果表明,实验室得到的钢材更为洁净,组织中保留有合理的残余奥氏体含量;与采用同样热处理制度的工业钢带相比,在保持或提高伸长率的同时,抗拉强度提高50~85 MPa,杯突值提高1~3 mm;适当调节Cr、Ni的当量比以及采用合理的锻造、轧制工艺可以消除钢带组织中δ-铁素体的不利影响,更大限度发挥材料潜力.","authors":[{"authorName":"","id":"1d053a3e-6d71-4f4c-9456-71e995d0d170","originalAuthorName":"孙永庆"},{"authorName":"梁剑雄","id":"a9be5cfe-55d0-4448-a202-7ba8a8366699","originalAuthorName":"梁剑雄"},{"authorName":"杨志勇","id":"63825658-2ef3-4df8-9277-dabc0fde4e05","originalAuthorName":"杨志勇"},{"authorName":"宋为顺","id":"4bdaa81c-acee-486c-87e4-9feb78afee0b","originalAuthorName":"宋为顺"}],"doi":"","fpage":"76","id":"b02da1d2-1185-41e4-b943-f44815892461","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"11eade8c-1cb8-439a-9961-d7683b9e8f1c","keyword":"0Cr12Mn5Ni4M03AI","originalKeyword":"0Cr12Mn5Ni4M03AI"},{"id":"c4b64535-e6ef-4c78-8ca2-d337086268cb","keyword":"高强不锈钢","originalKeyword":"高强不锈钢"},{"id":"297b591d-dc65-416d-b39d-d65ab14f7f5e","keyword":"时效温度","originalKeyword":"时效温度"},{"id":"75cad826-b3c0-4f40-9683-b1eb1fb8136c","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gt200901019","title":"冶炼方法和热处理工艺对0Cr12Mn5Ni4M03AI高强不锈钢带力学性能和组织的影响","volume":"44","year":"2009"}],"totalpage":8,"totalrecord":76}