{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以聚乙二醇甲醚丙烯酸酯(OEGA)和2-(2-乙氧基乙氧基)乙基丙烯酸酯(DEGEEA)为单体通过可逆-加成断裂链转移(RAFT)法合成临界溶解温度(LCST)可调的水溶性无规共聚物P(OEGA-co-DEGEEA) (POD).借助核磁共振氢谱、凝胶渗透色谱对该共聚物的化学结构、相对分子质量及其分布进行表征,采用紫外可见分光光度计和动态光散射对其相行为及聚集行为进行研究.结果表明,POD的LCST可通过单体投料比和盐进行调节.OEGA含量和阴离子半径的增加均能使LCST升高.温度低于LCST时,共聚物倾向于分子内聚集;温度高于LCST时,共聚物的聚集方式从分子内向分子间转变,聚集体的粒径与共聚物浓度、盐等有关.","authors":[{"authorName":"黄成","id":"935b9c65-df5c-4669-93d3-a01ed9437e2b","originalAuthorName":"黄成"},{"authorName":"申迎华","id":"df0e7e1c-6139-411c-87b3-285077060a23","originalAuthorName":"申迎华"},{"authorName":"吴鹏","id":"07bcbb7d-1e1d-4275-b210-8adfc10bec2c","originalAuthorName":"吴鹏"},{"authorName":"贾兰","id":"7d63b173-cde6-49d3-9cf0-c8b719500fea","originalAuthorName":"贾兰"},{"authorName":"邱丽","id":"3d79ff90-e7e5-456a-8279-ae6cb13d84d5","originalAuthorName":"邱丽"},{"authorName":"温庆昶","id":"46c05d7b-f1d3-4511-99f3-91b8217e51d5","originalAuthorName":"温庆昶"}],"doi":"","fpage":"51","id":"39329fe0-57c9-4c28-a2e8-2e6739330950","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"a19fb185-9410-4f46-8def-f14ef7f2b288","keyword":"POD共聚物","originalKeyword":"POD共聚物"},{"id":"3a522601-0872-49c3-bce0-b1497d0b2405","keyword":"临界溶解温度可调","originalKeyword":"低临界溶解温度可调"},{"id":"9c56c39a-3b85-402c-a1c1-6c57127f3afa","keyword":"温度敏感性","originalKeyword":"温度敏感性"},{"id":"06560d60-f782-4bb0-875b-4612ed799534","keyword":"相行为","originalKeyword":"相行为"},{"id":"700a205a-facd-430d-863a-eff1e40baa37","keyword":"聚集行为","originalKeyword":"聚集行为"}],"language":"zh","publisherId":"gfzclkxygc201502011","title":"LCST可调无规共聚物的相行为及聚集行为","volume":"31","year":"2015"},{"abstractinfo":"讨论了聚砜(PSf)-N,N-二甲基乙酰胺(DMAc)-聚乙二醇(PEG200、PEG400和PEG600)临界共溶温度(LCST)体系;通过理论和实验验证了其LCST体系的存在,利用LCST的热致相分离(LCST-TIPS或Reverse thermally induced phase separation,简称RTIPS)法制备了PSf微孔膜,讨论了凝胶浴温度、制膜方法、铸膜液组成对PSf微孔膜的结构及性能影响.通过RTIPS机理所成膜综合力学性能优于非溶剂致相分离(NIPS)法所制备的膜,当PEG400:DMAc质量比为1.1∶1,成膜水浴温度60℃时,膜渗透性能和机械性能较好,其膜通量670 L/(m2·h·bar)(1 bar=0.1 MPa),平均孔径0.060 μm,断裂强度5.62MPa.","authors":[{"authorName":"许振良","id":"cf32c08f-c66a-470f-b1a4-154e3ef29046","originalAuthorName":"许振良"},{"authorName":"蒋福四","id":"205e3139-ce76-4f48-8542-700971c437c8","originalAuthorName":"蒋福四"},{"authorName":"魏永明","id":"dbed902a-9b32-439c-a7ed-5cd1a79d8377","originalAuthorName":"魏永明"},{"authorName":"刘敏","id":"31361a9a-f57f-49bd-a9d3-0c8ec0d2f239","originalAuthorName":"刘敏"}],"doi":"","fpage":"5","id":"f05647d0-b455-40c0-a3ef-14f4cebc37a7","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"8194e893-b28d-4a8e-993a-c4880fcccfd3","keyword":"聚砜","originalKeyword":"聚砜"},{"id":"1c249749-9559-40dc-af54-d8fca6ee2775","keyword":"微孔膜","originalKeyword":"微孔膜"},{"id":"22cafe2c-c47a-4244-9e7a-f3ba95c4b863","keyword":"热致相分离","originalKeyword":"热致相分离"},{"id":"5a4047c6-ff90-49a7-931b-2cdb6572ec86","keyword":"临界共溶温度","originalKeyword":"低临界共溶温度"}],"language":"zh","publisherId":"mkxyjs201303002","title":"临界共溶温度PSf-DMAc-PEG体系微孔膜及其性能表征","volume":"33","year":"2013"},{"abstractinfo":"通过陶瓷烧结工艺研究了Ba0.6Sr04(Zr0.2SnxTi0.8-x)O3材料.性能测试结果表明,该固溶体是一种优异的可调材料,当x =0.03时,在1.5 kV/mm电场下,介电常数低于2000,可调性达到27.9%,介电损耗至0.00010(100kHz,室温).XRD结果显示该固溶体是典型的钙钛矿结构.","authors":[{"authorName":"王希林","id":"96798bbf-1745-4423-bd41-1b0065b19a1a","originalAuthorName":"王希林"},{"authorName":"赵永杰","id":"e50c3c6b-740f-4a69-b74b-f054c92df8df","originalAuthorName":"赵永杰"},{"authorName":"赵玉珍","id":"e0b53ec8-7c85-4e10-a5e6-6c71c0d40936","originalAuthorName":"赵玉珍"},{"authorName":"贾志东","id":"24e37229-42dc-4f6e-be02-63d43905b065","originalAuthorName":"贾志东"},{"authorName":"周和平","id":"451222c7-5411-418f-94e3-2eb6f95e8258","originalAuthorName":"周和平"}],"doi":"","fpage":"3056","id":"64b0cce5-7b41-40ec-b05b-696336c10878","issue":"11","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"a3ebda9d-aeb2-4760-a6b8-9c9959059252","keyword":"钛酸锶钡陶瓷","originalKeyword":"钛酸锶钡陶瓷"},{"id":"62a02869-04bd-407b-9b95-21d286b4da96","keyword":"固溶度","originalKeyword":"固溶度"},{"id":"2c57e72e-da3b-4f04-a3fa-5f9e012e9ce8","keyword":"可调性","originalKeyword":"可调性"}],"language":"zh","publisherId":"rgjtxb98201511022","title":"介高可调性钛酸锶钡陶瓷的研究","volume":"44","year":"2015"},{"abstractinfo":"超临界流体广泛地应用于能源动力、制冷空调等多个领域,而固体在超临界流体中的溶解度对于工业过程有较大的影响.工程上常用状态方程计算溶解度,本文将结合了重整化群理论的RG-CPA方程推广到了溶解度的计算中,RG-CPA方程能够准确地描述流体在近临界和远临界区域的热力学性质,有效地克服了经典立方型状态方程无法准确描述近临界区域热力学性质的缺点.采用该方法对7种有机固体在超临界CO2中的溶解度进行了计算,并与经典方程进行了比较.结果表明,与经典方程相比,RG-CPA方程能更好地再现极接近临界点处溶解度的陡峭变化规律.","authors":[{"authorName":"许心皓","id":"6b723999-74d2-444b-a33f-66808bbd910a","originalAuthorName":"许心皓"},{"authorName":"申爱景","id":"53f12ba3-b628-4895-8802-2ec1b9921293","originalAuthorName":"申爱景"},{"authorName":"段远源","id":"fc5a935a-7ea7-46ee-bc3f-5099fd7834fc","originalAuthorName":"段远源"},{"authorName":"杨震","id":"1e02bf4e-0992-4a15-9970-603e1b05357c","originalAuthorName":"杨震"}],"doi":"","fpage":"1621","id":"e7e1d824-4c84-475e-aefb-ca90501d777e","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"bb718a9b-86b3-4020-a507-96431f526af9","keyword":"溶解度","originalKeyword":"溶解度"},{"id":"3cf5c3aa-54ae-4772-93af-2514b48abc92","keyword":"超临界CO2","originalKeyword":"超临界CO2"},{"id":"675fbeff-c321-4458-83b7-b8f52cd5c9bd","keyword":"RG-CPA方程","originalKeyword":"RG-CPA方程"}],"language":"zh","publisherId":"gcrwlxb201309005","title":"RG-CPA方程计算固体在超临界流体中的溶解度","volume":"34","year":"2013"},{"abstractinfo":"在铝电解工艺中,氧化铝在电解质中的溶解同时受传热与传质的控制.通过建立氧化铝颗粒溶解的传热控制模型、传质控制模型以及收缩核模型,基于OpenFOAM开源软件平台,采用自编程的方法开发氧化铝溶解求解模块,对氧化铝颗粒在两种控制机制下的溶解进行数值模拟.结果表明:在传质机制控制下,其颗粒的质量溶解速率及其速率的变化梯度均随粒径的减小而降低;在传热机制控制下,其颗粒质量溶解速率也随颗粒粒径的减小而减小,但速率梯度变化不大.为了区分氧化铝溶解过程中传热与传质两种控制机制中哪种机制占主导作用,提出临界直径的定义及其判定.研究得出氧化铝颗粒临界直径为560 μm,小于560 μm的氧化铝颗粒溶解受传质机制的控制,大于560 μm的氧化铝颗粒溶解受传热机制的控制.","authors":[{"authorName":"李茂","id":"f0ba8157-c38a-4074-93ee-006aea22f0af","originalAuthorName":"李茂"},{"authorName":"白晓","id":"a86f53b1-62b6-4c07-81dd-f11f049e8c5f","originalAuthorName":"白晓"},{"authorName":"李远","id":"2fd41c06-e9b7-4cee-a1a6-259060c6efc8","originalAuthorName":"李远"},{"authorName":"侯文渊","id":"2be50096-ff69-458d-ae06-2fb680386f8d","originalAuthorName":"侯文渊"},{"authorName":"高玉婷","id":"3407f199-27e0-4d6e-b068-c47588605f2d","originalAuthorName":"高玉婷"}],"doi":"","fpage":"455","id":"dc273c64-905b-49b7-908b-4249b255e229","issue":"2","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"3701f4b0-0ac2-4a85-903d-b0ec353aaa99","keyword":"铝电解","originalKeyword":"铝电解"},{"id":"0a93b794-07c5-4a06-b12f-5cef69e88d6d","keyword":"氧化铝溶解","originalKeyword":"氧化铝溶解"},{"id":"feb8580f-c0fc-41ac-83ef-527c6ebe64d9","keyword":"传质控制机制","originalKeyword":"传质控制机制"},{"id":"2b58f9f8-9701-4dd8-9bd4-2315fbf0ffda","keyword":"传热控制机制","originalKeyword":"传热控制机制"},{"id":"57f02177-470d-43b8-bff4-30a740b6fc64","keyword":"临界直径","originalKeyword":"临界直径"}],"language":"zh","publisherId":"zgysjsxb201602025","title":"氧化铝颗粒的溶解控制机制及其临界特征","volume":"26","year":"2016"},{"abstractinfo":"设计了一种温度系数可调的带隙基准源,利用控制PTAT电流的大小产生具有不同温度系数的基准电压,仅采用两个双极型晶体管,具有较好的电源噪声抑制特性.与传统方法相比,简化了电路结构,减小了占用芯片面积,改善了版图设计的对称性.该电路在更宽的调节范围内,通过4位控制信号可实现16级的温度系数调节,同时通过设计专门电路提高了电源噪声抑制比.采用0.35 μm CMOS工艺实现了该带隙基准源.仿真结果表明,基准电压的温度系数可在-1.76~+1.84 mV/℃范围内进行调节,低频时基准电压的PSRR达到-110 dB.","authors":[{"authorName":"仇岩","id":"da42a3e4-0286-4cfb-a696-fa0c7dbe73a9","originalAuthorName":"仇岩"},{"authorName":"魏廷存","id":"1b0c7e1a-be09-48b7-90c1-d57265c45ba3","originalAuthorName":"魏廷存"},{"authorName":"王佳","id":"b2f3f02a-8a66-4207-977b-118ae8d1d87a","originalAuthorName":"王佳"},{"authorName":"郑然","id":"f1825e8b-5bc5-4157-a586-2ca9a1ed6bc1","originalAuthorName":"郑然"}],"doi":"10.3969/j.issn.1007-2780.2010.01.020","fpage":"105","id":"515eb6fb-bab9-4772-b139-7a22e85d82c9","issue":"1","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"fe227a1a-1143-40ce-932b-43e4ee761146","keyword":"带隙基准","originalKeyword":"带隙基准"},{"id":"b2ca314c-deb6-421a-88a8-f96d7cf353c3","keyword":"PTAT电流","originalKeyword":"PTAT电流"},{"id":"7c382e42-7844-476f-bf0f-08be4a6f00d3","keyword":"温度系数可调","originalKeyword":"温度系数可调"},{"id":"95f643f7-413f-4c4b-9ede-351e6c4178a7","keyword":"PSRR","originalKeyword":"PSRR"}],"language":"zh","publisherId":"yjyxs201001020","title":"一种基于控制PTAT电流的温度系数可调带隙基准源","volume":"25","year":"2010"},{"abstractinfo":"现阶段,利用无机水合盐制备相变储能材料已成为一大研究热点,但是单组份无机水合盐相变储能材料的相变温度高,较难适用于温室大棚、室内节能材料等低温应用领域.为了解决这一问题,将CaCl2·6H2O、MgCl2·6H2O以及H2O混合配制出了CaCl2-MgCl2-H2O混盐体系,并采用.T-history方法和差示扫描量热法研究了混盐的体系组成、成核剂添加量等因素对材料相变性能的影响.制备的CaCl2-MgCl2-H2O混盐相变材料可以在25℃以下完全熔解,并且通过改变混盐体系的组成可使材料凝固温度在10℃~20℃范围内可调.此外,本研究在一定程度上解决了无机水合盐相变储能材料在相变过程中的过冷和相分离现象.","authors":[{"authorName":"赵有璟","id":"dcfeab3b-f8e2-448a-a44a-ba67ec627520","originalAuthorName":"赵有璟"},{"authorName":"时历杰","id":"0d9dff91-7d98-4865-bd6f-085e262fd191","originalAuthorName":"时历杰"},{"authorName":"康为清","id":"c4e362c4-d5db-4561-a718-9b875001709f","originalAuthorName":"康为清"},{"authorName":"张宏韬","id":"45d5399a-0069-4d52-a94c-cfd2139071af","originalAuthorName":"张宏韬"},{"authorName":"王敏","id":"ca411b58-c8cb-46ea-afc0-87606573cc82","originalAuthorName":"王敏"}],"doi":"","fpage":"79","id":"72ff1c63-2078-4bb6-95a7-d4a51f8eec4a","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"f257f7fb-2939-4c9b-93c4-272a01c9bcfc","keyword":"相变储能材料","originalKeyword":"相变储能材料"},{"id":"80b30b24-d38a-49d6-9e2a-141ea09bf098","keyword":"储能材料","originalKeyword":"储能材料"},{"id":"6f014989-aa40-449f-98ef-6fae2ec591f6","keyword":"无机水合盐","originalKeyword":"无机水合盐"},{"id":"bbf57425-9cb0-49cc-b54f-1226d2df7197","keyword":"混盐体系","originalKeyword":"混盐体系"}],"language":"zh","publisherId":"clkxygc201401016","title":"相变温度可调的无机混盐体系相变储能材料","volume":"32","year":"2014"},{"abstractinfo":"研究了N18锆合金(Zr--1Sn--0.3Nb--0.3Fe--0.1Cr)发生氢致延迟开裂(DHC)临界最大开裂温度(Tc)和临界最小止裂温度(Th)随氢含量的变化规律; 同时对裂纹尖端偏聚氢含量及静水应力和发生DHC的临界氢含量进行了理论分析, 建立理论模型对临界温度进行理论计算. 结果表明: N18合金发生氢致延迟开裂的临界温度介于相同氢含量下溶解固溶温度与析出固溶温度之间, 且最大开裂温度小于最小止裂温度, 计算的临界温度值与实验值相当吻合, 因此该理论模型能够真实反映N18锆合金的氢致延迟开裂的物理过程.","authors":[{"authorName":"孙超谭军应诗浩李聪彭倩赵素琼","id":"0dac4bd3-5da8-4946-8321-d7c0bc449f32","originalAuthorName":"孙超谭军应诗浩李聪彭倩赵素琼"}],"categoryName":"|","doi":"","fpage":"541","id":"04b84ad4-28d7-4c22-a74d-13d0f6ca834e","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"a43f904c-12bf-4bce-bab0-2c11dfb30d25","keyword":"N18锆合金","originalKeyword":"N18锆合金"},{"id":"4f93b07c-7735-483c-ac35-2514e5f1815c","keyword":" delayed hydride cracking","originalKeyword":" delayed hydride cracking"},{"id":"1f4cc3ec-458e-42aa-bae1-0c16ad9774c2","keyword":" critical temperature","originalKeyword":" critical temperature"}],"language":"zh","publisherId":"0412-1961_2009_5_5","title":"N18锆合金氢致裂纹延迟开裂临界温度研究","volume":"45","year":"2009"},{"abstractinfo":"研究了N18锆合金(Zr-1Sn-0.3Nb-0.3Fe-0.1Cr)发生氢致延迟开裂(DHC)临界最大开裂温度(Tc)和临界最小止裂温度(Th)随氢含量的变化规律;同时对裂纹尖端偏聚氢含量及静水应力和发生DHC的临界氢含量进行了理论分析,建立理论模型对临界温度进行理论计算.结果表明:N18合金发生氢致延迟开裂的临界温度介于相同氢含量下溶解固溶温度与析出固溶温度之间,且最大开裂温度小于最小止裂温度,计算的临界温度值与实验值相当吻合,因此该理论模型能够真实反映N18锆合金的氢致延迟开裂的物理过程.","authors":[{"authorName":"孙超","id":"86320ec8-f5f7-470e-94d3-68e208c12b7a","originalAuthorName":"孙超"},{"authorName":"谭军","id":"6f392631-741e-453c-9c01-d397bf839b93","originalAuthorName":"谭军"},{"authorName":"应诗浩","id":"5acc0918-7f11-4672-b96c-02eb5877ee2d","originalAuthorName":"应诗浩"},{"authorName":"李聪","id":"1a2073bd-5b2a-4b24-9b80-ffc716fb348b","originalAuthorName":"李聪"},{"authorName":"彭倩","id":"14de326b-3e00-4cf9-9523-bda9f4cdee50","originalAuthorName":"彭倩"},{"authorName":"赵素琼","id":"878e1562-e918-46e7-860a-d2a26cf54d6e","originalAuthorName":"赵素琼"}],"doi":"10.3321/j.issn:0412-1961.2009.05.005","fpage":"541","id":"8c25feb5-d34a-40ca-b1dd-064328dad0e3","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"e17e3120-ae34-45f3-88f8-942946b10b55","keyword":"N18锆合金","originalKeyword":"N18锆合金"},{"id":"07385a2d-4162-4846-99e6-cd08504c58da","keyword":"氢致延迟开裂","originalKeyword":"氢致延迟开裂"},{"id":"11ab0e7d-56e4-4ee6-b8cd-090bc2b6a2cf","keyword":"临界温度","originalKeyword":"临界温度"}],"language":"zh","publisherId":"jsxb200905005","title":"N18锆合金氢致裂纹延迟开裂临界温度研究","volume":"45","year":"2009"},{"abstractinfo":"由于TFT-LCD显示屏的物理特性随温度而发生变化,驱动电路必须提供具有相同温度特性的驱动电压,以补偿显示屏的温度特性,进而提高显示画质.文章研究并设计了一种用于TFT-LCD彩屏手机驱动芯片的基准电压产生电路,其输出电压的绝对值与温度系数可编程调节,从而可实现与液晶显示屏的温度特性相匹配.介绍了该电路的各子模块电路,包括偏置电路、带隙基准电路和输出电压调节电路,详细分析了带隙基准电路所产生的基准电压的温度系数及其调节原理.用Hspice对采用0.25 μm CMOS工艺设计的电路进行了仿真.仿真结果表明,基准电压的温度系数可从-1.24 ~ 1.13 mV/℃变化,输出电压的绝对值可从1.8 ~ 2.1 V调节,最大可提供负载电流40 mA.","authors":[{"authorName":"习江艳","id":"e880b3a1-d6f1-4837-aa00-497399feb009","originalAuthorName":"习江艳"},{"authorName":"魏廷存","id":"62e7051a-e2ee-420f-8a3f-6e58d21a247b","originalAuthorName":"魏廷存"}],"doi":"10.3969/j.issn.1007-2780.2006.05.034","fpage":"574","id":"372e0690-be53-4749-a209-832020f57fae","issue":"5","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"e4ffa326-2154-4d5c-a4fc-067e790a3a57","keyword":"TFT-LCD彩屏","originalKeyword":"TFT-LCD彩屏"},{"id":"d4088339-a851-40b5-896e-c47588c4e62f","keyword":"温度系数可调","originalKeyword":"温度系数可调"},{"id":"e7822a25-6d15-4de9-8f5f-16f7f0542a2d","keyword":"带隙基准","originalKeyword":"带隙基准"},{"id":"5018b10c-815b-4e94-a041-f81b5396e7fb","keyword":"电压调节","originalKeyword":"电压调节"}],"language":"zh","publisherId":"yjyxs200605034","title":"温度系数可调的基准电压产生电路研究与设计","volume":"21","year":"2006"}],"totalpage":6438,"totalrecord":64380}