{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"蚕丝丝素材料植入体内后的降解可直接造成其形态和结构变化、力学性能和质量下降.降解产物与组织反应或全身反应的程度密切相关.用于组织工程和再生医学的丝素支架材料的生物降解速率应与组织再生速率相匹配;用于药物控制释放系统的丝素载体的生物降解速率应与生物活性物质的释放需要相适应.概述了近年来对丝素材料生物降解问题的研究现状,介绍了通过体外、体内实验所观察到的丝素材料生物降解行为,包括天然丝素纤维、再生丝素纤维、多孔支架及薄膜等,总结了未来需要进一步研究的问题.指出蚕丝丝素作为一种蛋白质可被多种蛋白酶催化水解;天然丝素纤维比再生丝素材料的生物降解速率慢;丝素的分子构象、结晶度、交联程度、材料的形态等对丝素的降解速率有明显影响;建立预测丝素材料生物降解程度与其功能变化以及与机体应答关系的研究模型和技术,有效调控其生物降解速率,将是未来的研究方向.","authors":[{"authorName":"李明忠","id":"589d77c7-0b4a-445f-8df1-f23b6c3b0f06","originalAuthorName":"李明忠"},{"authorName":"张剑","id":"8c4dca8a-a2d0-4c66-b5ad-745a853a56a1","originalAuthorName":"张剑"},{"authorName":"邱玉华","id":"9a432ded-1121-4c75-b6cb-e29e3ed62fdc","originalAuthorName":"邱玉华"},{"authorName":"卢神州","id":"e56b17a1-844c-4ad5-8e9b-4ae93f5eb861","originalAuthorName":"卢神州"}],"doi":"10.7502/j.issn.1674-3962.2015.07.11","fpage":"565","id":"fb796443-c2c0-4559-afcd-6e9daad7dfa0","issue":"7","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"8d82a4c8-2136-492d-9ee6-d7da6a1efd29","keyword":"蚕丝","originalKeyword":"蚕丝"},{"id":"e7709a0b-4ae1-4a3f-813d-db62876844bb","keyword":"丝素","originalKeyword":"丝素"},{"id":"495e465c-f961-44f1-af9b-6e89760adac3","keyword":"生物降解","originalKeyword":"生物降解"},{"id":"22eff4c7-81ad-4b18-b4f6-00b1c0622d76","keyword":"蛋白酶","originalKeyword":"蛋白酶"},{"id":"afbbce0b-62f7-44cc-a177-b344c57f1a53","keyword":"丝素多孔材料","originalKeyword":"丝素多孔材料"}],"language":"zh","publisherId":"zgcljz201507011","title":"蚕丝丝素材料的生物降解性能","volume":"34","year":"2015"},{"abstractinfo":"以丝素和羟基磷灰石为基材,磷酸盐缓冲液为溶剂,戊二醛为交联剂制备丝素/羟基磷灰石支架材料,对丝素生物材料在骨材料中的开发应用有积极意义。研究表明,丝素/羟基磷灰石复合材料具有结晶结构和β构象。当丝素与羟基磷灰石的比例为6/4时,支架材料的弹性模量和压缩强度达到最大,分别为48.087 MPa和1.427 MPa,孔隙率为70%,支架孔径50μm~200μm。利用该方法制备获得的支架材料,力学性能有明显提高,与人体多孔骨的结构接近。","authors":[{"authorName":"徐水","id":"2921e8e1-1c0a-42c5-a460-4ea948de100d","originalAuthorName":"徐水"},{"authorName":"张胡静","id":"78adfdd4-20ee-41fc-9968-8b2b450fe8e5","originalAuthorName":"张胡静"},{"authorName":"张海萍","id":"277119cb-a5de-4100-b65d-01318f162b54","originalAuthorName":"张海萍"},{"authorName":"杨明英","id":"4940ba62-bb8c-48db-ae3b-9ea6755b8de5","originalAuthorName":"杨明英"},{"authorName":"朱良均","id":"7cb15292-d268-4875-91a3-f88b31af6b7b","originalAuthorName":"朱良均"}],"doi":"","fpage":"150","id":"9b20de4c-d0a8-4513-ac25-ed94e15d0d44","issue":"10","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"f7b08485-39fa-49e5-b960-c7a7ede4464a","keyword":"丝素","originalKeyword":"丝素"},{"id":"95d79324-ffe5-4380-a0f1-51e81082d9b4","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"909e7375-611b-47c0-b61b-11d89c680cba","keyword":"支架","originalKeyword":"支架"},{"id":"8e0510a8-f8a4-4aff-9924-d6bf32f822a1","keyword":"结构","originalKeyword":"结构"},{"id":"593d5267-b0a4-4c19-8435-649206e93822","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gfzclkxygc201110046","title":"高强度力学性能丝素/羟基磷灰石多孔支架材料的初步制备","volume":"27","year":"2011"},{"abstractinfo":"采用水刺法制备了多孔丝素蛋白(SF)支架,通过原位矿化法制备了纳米羟基磷灰石(HAP)/丝素蛋白复合材料.HAP 呈现均匀棒状结构,而没有丝素蛋白支架时 HAP 仅形成颗粒状结构,这表明蛋白支架可诱导 HAP 形成均匀棒状结构,这可能是源于丝素蛋白中羧基和溶液中 Ca2+的静电作用;丝素蛋白支架起到了复合材料基材和 HAP 原位生长的高分子模板双重作用.采用红外光谱、X 射线衍射和力学性能测试对复合材料的结构性能进行了表征,红外谱图表明,HAP 中的 PO 3-4与 SF 中的—NH 2存在强烈的氢键相互作用,而 X 射线衍射图谱则表明复合材料中 SF 的保持了β折叠结构和结晶性能,使得复合材料具有良好的力学性能和多孔性能,有利于成骨细胞在支架上的增殖,同时,该方法制备的复合材料力学性能好,可大面积制备,成本低、制备方便,易于实现工业化,可望广泛用于骨修复支架材料.","authors":[{"authorName":"光善仪","id":"e8d50682-0b48-46f6-b209-c513251b1f79","originalAuthorName":"光善仪"},{"authorName":"柯福佑","id":"b99a1a22-6b07-43ee-8edd-75ea38799ae3","originalAuthorName":"柯福佑"},{"authorName":"沈玉华","id":"1bc15a30-2878-4ca1-a349-7ea5ad8482ea","originalAuthorName":"沈玉华"}],"doi":"10.3969/j.issn.1001-9731.2015.22.031","fpage":"22149","id":"19c6af6a-f8c5-4d3a-befd-5aab46643e30","issue":"22","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"65ccb737-3ed7-4252-bb6b-400f100cd0a2","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"116accf5-2399-4f5b-bba3-37e027c57663","keyword":"丝素蛋白","originalKeyword":"丝素蛋白"},{"id":"8fe33c1b-a163-47a7-aad2-170e2f558c40","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"30040e3a-38c7-4f17-8d3a-fa4d8c0c8ab0","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"gncl201522031","title":"非织造多孔丝素蛋白/纳米羟基磷灰石复合支架材料的制备和表征?","volume":"","year":"2015"},{"abstractinfo":"采用硝酸钙-丝素蛋白溶液与磷酸钠反应仿生合成纳米羟基磷灰石/丝素蛋白(n-HA/SF)复合材料,并以NaHCO3和NaCl为致孔剂制备了多孔复合支架材料,采用TEM、IR、SEM和EDX对其进行了表征.结果表明,复合材料中HA的粒径在20~50nm之间,是一种CO2-3部分替代型弱结晶类骨针晶,在形貌和尺寸等方面类似于人体骨磷灰石晶体;HA和SF两相间存在强烈的键合作用,复合支架材料呈高度多孔结构,孔壁上富含微孔,孔隙间贯通性高.EDX分析结果表明,HA在有机基体中分布均匀,钙磷元素比为1.66,当复合材料和致孔剂的比例为1:0.5时,其抗压强度可达20.23MPa.","authors":[{"authorName":"王江","id":"ccd16197-01eb-4a4e-9230-05beab273e7b","originalAuthorName":"王江"},{"authorName":"李玉宝","id":"83fe3511-c317-4eb9-a893-04be1f419b32","originalAuthorName":"李玉宝"},{"authorName":"左奕","id":"541e5e32-328a-4a12-9813-a1e94533a7ba","originalAuthorName":"左奕"},{"authorName":"杨维虎","id":"c9ff7672-e03c-4371-9af1-8d20183e3993","originalAuthorName":"杨维虎"},{"authorName":"张利","id":"a83ed66f-3d5c-4aca-b3c1-c47275219122","originalAuthorName":"张利"}],"doi":"","fpage":"1714","id":"ce7920ba-8f5b-4b88-b3dc-d1ea72e41d97","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c3c6afc2-7762-4874-ac5d-7f42a9979f78","keyword":"纳米羟基磷灰石","originalKeyword":"纳米羟基磷灰石"},{"id":"cec18120-dad5-4e8d-97d6-69b3e7810a8a","keyword":"丝素蛋白","originalKeyword":"丝素蛋白"},{"id":"17f4639b-52a2-4791-8dec-4139aafa0bd4","keyword":"仿生合成","originalKeyword":"仿生合成"},{"id":"a08a4680-fdd7-4e47-b5df-e08170e3d72b","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"19f41727-ed06-4af9-a021-791615179ace","keyword":"多孔支架材料","originalKeyword":"多孔支架材料"}],"language":"zh","publisherId":"gncl200810036","title":"纳米羟基磷灰石/丝素蛋白多孔支架材料的制备和表征","volume":"39","year":"2008"},{"abstractinfo":"报道了以下研究:研制成含抗菌药物的丝素膜,它用于创面保护,能防止感染,加速创面愈合;研制成多孔丝素膜,并研究了它们的结构和性能,多孔丝素膜能用作细胞培养的支架、药物缓释剂等;设计和研制成丝素成膜设备,该设备能用以生产丝素创面保护膜及其他医用膜.","authors":[{"authorName":"国家高技术新材料领域 丝素蛋白作为生物医学材料的应用研究和产品开发课题组","id":"d3a9c85e-c719-41c2-b375-a6c3b60a977c","originalAuthorName":"国家高技术新材料领域 丝素蛋白作为生物医学材料的应用研究和产品开发课题组"}],"doi":"","fpage":"63","id":"cd57d14f-3225-4b11-bde2-e196944a30bb","issue":"9","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"30ec1982-962f-4b78-8c8b-85819baeb2bf","keyword":"丝素膜","originalKeyword":"丝素膜"},{"id":"ec49159e-79d3-4a9d-8597-ceaf2dbec8b2","keyword":"抗菌药物","originalKeyword":"抗菌药物"},{"id":"9d06adda-7e48-4569-8314-f562e372729b","keyword":"多孔材料","originalKeyword":"多孔材料"},{"id":"0a727577-6670-434c-9e37-51aa5c5cd548","keyword":"成膜设备","originalKeyword":"成膜设备"}],"language":"zh","publisherId":"cldb200009021","title":"丝素蛋白作为生物医用材料的研究","volume":"14","year":"2000"},{"abstractinfo":"以冷冻干燥法制备多孔丝素(SF)支架,利用层层自组装将纳米纤维素晶须(CNW)和壳聚糖(CS)交替组装到多孔SF支架上得到SF/CNW-CS多孔复合支架.对SF/CNW-CS多孔复合支架的形貌和机械性能进行了表征.以MG-63细胞进行体外培养评估SF及SF/CNW-CS多孔复合支架的细胞相容性,MTT比色法和荧光图像的测试结果表明,与SF多孔支架相比,MG-63细胞在SF/CNW-CS多孔复合支架上的增殖、粘附和分化功能最高.因此,SF/CNW-CS支架有望成为骨组织工程的理想材料.","authors":[{"authorName":"谭卫琳","id":"370822ff-7a82-4e6d-913b-975e052fc59b","originalAuthorName":"谭卫琳"},{"authorName":"张琦","id":"5d15c055-df03-4531-9fe1-c680fc1c73dd","originalAuthorName":"张琦"},{"authorName":"何健新","id":"ca411f96-460e-4cb7-bbb6-5ed916237e80","originalAuthorName":"何健新"},{"authorName":"韩啟明","id":"c75900b5-432d-4b70-aef9-d8c530d864fd","originalAuthorName":"韩啟明"},{"authorName":"崔世忠","id":"34df379e-e582-4305-bbff-971ecbe3fbe9","originalAuthorName":"崔世忠"},{"authorName":"邵伟力","id":"20bd3b23-65b9-405c-8f9d-6cf0cf15dc2c","originalAuthorName":"邵伟力"}],"doi":"10.14136/j.cnki.issn 1673-2812.2015.06.019","fpage":"868","id":"b61fdb02-f153-4565-9d0a-511ebc2c85ba","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"1251ee64-8c30-4847-bd7b-4da35dd80902","keyword":"多孔丝素支架(SF)","originalKeyword":"多孔丝素支架(SF)"},{"id":"b4b4d5fc-441b-44e0-8a05-ba15dc6df698","keyword":"纳米纤维素晶须(CNW)","originalKeyword":"纳米纤维素晶须(CNW)"},{"id":"c64eee72-dd41-4566-9cf0-ab4c93c8406a","keyword":"层层自组装","originalKeyword":"层层自组装"},{"id":"ff1e6e78-b73f-4bc9-b0cb-c8fe62d0bfd7","keyword":"骨组织工程","originalKeyword":"骨组织工程"}],"language":"zh","publisherId":"clkxygc201506019","title":"丝素/纳米纤维素晶须/壳聚糖多孔复合支架的应用","volume":"33","year":"2015"},{"abstractinfo":"应用冷冻干燥技术,在不同预冻温度下制备不同质量比的三维多孔支架,用扫描电镜观察支架的微观形貌,X射线衍射仪分析其表面相结构,并测定了其吸水率、孔隙率和热稳定性,观察不同质量比和预冻温度对丝素(silk fibroin,SF)/明胶(gelatin,G)三维多孔支架结构和性能的影响。结果显示,通过改变材料的质量比和预冻温度可以控制支架的孔隙形貌、吸水率和孔隙率,并且将丝素与明胶复合可以使支架的热稳定性提高,同时结构更加稳定。","authors":[{"authorName":"殷丽华","id":"d63762b7-89f4-4dcd-9d13-b42d0f844cef","originalAuthorName":"殷丽华"},{"authorName":"彭鹏","id":"f4318026-73f1-40b2-bb3e-177911682fd5","originalAuthorName":"彭鹏"},{"authorName":"牟星","id":"14ccd73f-f9b2-4040-9af2-c0cf4d9c7a9a","originalAuthorName":"牟星"},{"authorName":"程文晓","id":"8d5baba9-8220-4328-b96f-839cfb993529","originalAuthorName":"程文晓"},{"authorName":"黄嵩涛","id":"be269d23-c49f-46e5-9088-941996a17147","originalAuthorName":"黄嵩涛"},{"authorName":"余占海","id":"3a6f4914-07e5-4cdf-b12c-301a860ad331","originalAuthorName":"余占海"}],"doi":"10.3969/j.issn.1001-9731.2013.23.006","fpage":"3388","id":"647a4298-0126-41ee-9728-6135407d994c","issue":"23","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"442c65fe-2606-4a1d-9785-d27472f81a82","keyword":"丝素","originalKeyword":"丝素"},{"id":"d58221df-74bc-4786-8ed4-13de72f6bc50","keyword":"明胶","originalKeyword":"明胶"},{"id":"a868e34a-7855-436f-a76c-67c7a45be63a","keyword":"冷冻干燥法","originalKeyword":"冷冻干燥法"},{"id":"28308859-e0b0-4a8d-89a1-07aca7794bb0","keyword":"支架","originalKeyword":"支架"}],"language":"zh","publisherId":"gncl201323006","title":"丝素/明胶三维多孔支架的构建及其结构和性能表征","volume":"","year":"2013"},{"abstractinfo":"以蚕丝丝素蛋白(SF)作为羟基磷灰石(HA)沉积的模板,制备HA/SF复合粉末,用扫描电镜(SEM)、热重分析(TGA)、X射线衍射(XRD)和傅立叶变换红外光谱(FT-IR)对复合粉末进行分析和鉴定.结果表明,合成产物是HA/SF复合物,其平均粒径约为275.7 nm,其中丝素蛋白含量为17.8%(质量分数).复合粉末经等静压成型后能够制得弯曲和压缩强度分别为19.87 MPa和28.65 MPa的HA/SF复合材料,以NaCl为致孔剂能够制得平均孔径约为61 μm、孔隙率为40%的多孔HA/SF复合材料.","authors":[{"authorName":"刘佳佳","id":"34cf7c81-e3d4-4503-9cf6-0cff1c04f338","originalAuthorName":"刘佳佳"},{"authorName":"李明忠","id":"6405e759-984d-4e14-9b77-57af2eb7f7bd","originalAuthorName":"李明忠"},{"authorName":"卢神州","id":"235dae9a-d9e6-4310-bece-354062b77d16","originalAuthorName":"卢神州"}],"doi":"","fpage":"245","id":"43c10973-f106-4e56-9ade-fc1dd5a065a2","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"6d919d5e-710a-4beb-987c-a215bd8acf08","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"c12ca1e1-8c83-480c-9de9-03b2e67bccda","keyword":"丝素蛋白","originalKeyword":"丝素蛋白"},{"id":"0cc9dbe0-51ac-46cf-9f4d-11490e3bfcca","keyword":"多孔材料","originalKeyword":"多孔材料"},{"id":"b8576ec8-9bbb-4ce8-9678-be8f8fd26d6c","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"gfzclkxygc200605062","title":"羟基磷灰石/丝素蛋白复合材料的制备","volume":"22","year":"2006"},{"abstractinfo":"丝素蛋白作为来源广泛、性能优良的动物纤维蛋白质,近年来引起了许多研究者的关注.综述了丝素蛋白的结构、性质以及作为生物材料的应用研究.","authors":[{"authorName":"顾晋伟","id":"b888a8a5-f0ee-443e-94ad-e3ff983716a9","originalAuthorName":"顾晋伟"},{"authorName":"杨新林","id":"4c38804d-8b2b-46b5-9d63-c7c6e8b901c1","originalAuthorName":"杨新林"},{"authorName":"朱鹤孙","id":"7f4908c8-5a2f-48bf-9152-d1f4a695de02","originalAuthorName":"朱鹤孙"}],"doi":"","fpage":"46","id":"4ca77fd6-ab69-44d9-a376-63f378460184","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e6359165-5b02-4467-9d40-38b277e3f5cf","keyword":"丝素蛋白","originalKeyword":"丝素蛋白"},{"id":"8c8068fd-15b9-4ac3-beb9-c705c85ee36b","keyword":"酶固定化材料","originalKeyword":"酶固定化材料"},{"id":"b6cf35ad-8084-4855-8b43-d15b35ff30a7","keyword":"医用材料","originalKeyword":"医用材料"}],"language":"zh","publisherId":"cldb200111017","title":"丝素蛋白作为生物材料的研究进展","volume":"15","year":"2001"},{"abstractinfo":"采用冷冻干燥法制备了介孔生物玻璃(M58S)/丝素蛋白(SF)复合多孔海绵,采用透射电镜(TEM)和场发射扫描电镜(FESEM)等观察M58S和复合多孔海绵的形貌和结构特征,通过体外凝血实验、大鼠肝脏止血模型和体外细胞毒性实验评价复合多孔海绵的止血性能和细胞毒性.TEM显示M58S内部具有规则的纳米级介孔孔道,排列高度有序,比表面积达400 m2/g,平均孔径为7.3 nm;FESEM显示复合海绵呈现多孔沟壑状结构,孔隙率>80%;APTT和PT测试结果表明该复合多孔海绵主要通过作用于血液的内源性凝血系统途径促进凝血;小鼠肝脏止血模型显示当M58S含量>15%时,复合多孔海绵的止血效果较好且优于明胶海绵,有望用作体外快速止血材料.","authors":[{"authorName":"李静静","id":"b1e633bd-2802-45f0-b446-cc8342c7cb11","originalAuthorName":"李静静"},{"authorName":"朱海霖","id":"e81bba78-43a2-4e64-92c8-194c8a0f0853","originalAuthorName":"朱海霖"},{"authorName":"雷彩虹","id":"399c2a86-2301-4e1e-b3d1-f18bf74d3583","originalAuthorName":"雷彩虹"},{"authorName":"陈建勇","id":"ef061f1b-c3d6-4a5b-9606-66035928d72e","originalAuthorName":"陈建勇"}],"doi":"10.3969/j.issn.1001-9731.2017.02.017","fpage":"2096","id":"965e7b8b-ca53-49e9-8a9c-e1fecf2d5403","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"1e777e54-ee4d-45fa-9c9a-4c5da28957a6","keyword":"冷冻干燥","originalKeyword":"冷冻干燥"},{"id":"256fdc19-9677-4a86-97f6-e4f1e63008c2","keyword":"介孔生物玻璃","originalKeyword":"介孔生物玻璃"},{"id":"b70fa2ad-375e-4e16-97d5-3505b59d555a","keyword":"丝素蛋白","originalKeyword":"丝素蛋白"},{"id":"38dc424f-683e-4a8a-8028-778ea9255d2b","keyword":"复合多孔海绵","originalKeyword":"复合多孔海绵"},{"id":"f141cd17-e17f-4ccd-8741-fd37a424e2a8","keyword":"止血","originalKeyword":"止血"}],"language":"zh","publisherId":"gncl201702017","title":"介孔生物玻璃/丝素蛋白复合多孔海绵的结构及止血性能研究","volume":"48","year":"2017"}],"totalpage":5783,"totalrecord":57827}