{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"IP6是一种天然无毒水溶性金属缓蚀剂,以IP6为主要缓蚀剂成分配制成的水基金属切削液,对各种金属材料有良好的防锈性能,且无毒.","authors":[{"authorName":"张洪笙","id":"715f8dd3-c2c2-4ae6-ba1d-5a7b709bf6b5","originalAuthorName":"张洪笙"}],"doi":"10.3969/j.issn.1001-1560.2002.07.018","fpage":"44","id":"7d9d079f-2064-4a2f-99b2-be13be1af4c0","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"b111b2e9-8a4a-4d21-94bd-0446530005af","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"f8cb21ea-c16f-4ac7-93b9-a9c423fa242e","keyword":"环保","originalKeyword":"环保"},{"id":"7d5d4802-b3b3-4604-b36e-13d65cf59b2f","keyword":"水基切削液","originalKeyword":"水基切削液"}],"language":"zh","publisherId":"clbh200207018","title":"无毒高效水溶性缓蚀剂在切削液中的应用","volume":"35","year":"2002"},{"abstractinfo":"建立了以丙酮为分散剂、氯苯为萃取剂,采用分散·微萃取、气相色谱/选择离子质谱联用测定机械加工水基切削液及其废水中三氯苯的方法.该方法与顶空萃取、-萃取和固相萃取结合气相色谱/电子捕获检测法相比,具有线性范围广、富集倍数高、重现性好、操作简便、干扰小等优点.样品中三氯苯的加标回收率为94.7%~104.3%,相对标准偏差为2.3%~7.8%.三氯苯的3种同分异构体l,3,5-,1,2,4-和1,2,3-三氯苯的检出限分别为2.0,6.0和3.0μg/L.重点探讨了萃取剂和分散剂的种类、体积、萃取时间和盐效应等对三氯苯萃取效率的影响,优化了萃取条件.考察了机械加工水基切削液中常用的添加剂对检测结果的影响,结果表明1.0%的亚硝酸钠和聚乙二醇对三氯苯的检测基本无影响.采用该方法对4种实际样品中的三氯苯进行了测定,其中两个样品中含有三氯苯,质量浓度范围为0.15~1.67 mg/L.","authors":[{"authorName":"沈昊宇","id":"3830b6cc-9df4-4257-8216-1417aea499f8","originalAuthorName":"沈昊宇"},{"authorName":"赵永纲","id":"3a1025b3-ad13-4f26-9d8e-2d8bb8887c6c","originalAuthorName":"赵永纲"},{"authorName":"怀明敏","id":"ebc33a0d-7de5-4199-94b3-6d231d8ca119","originalAuthorName":"怀明敏"},{"authorName":"江海亮","id":"e2d59a50-f908-4e21-8e5b-1a34807d27d0","originalAuthorName":"江海亮"}],"doi":"10.3321/j.issn:1000-8713.2009.01.012","fpage":"63","id":"cd6765db-6c1d-4444-b5a6-e38664bdba24","issue":"1","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"f6bb936c-c80a-4868-b302-805f9c945620","keyword":"分散-微萃取","originalKeyword":"分散液-液微萃取"},{"id":"a924738b-58f3-473b-9e32-13cafb2b100c","keyword":"气相色谱/质谱联用","originalKeyword":"气相色谱/质谱联用"},{"id":"a9185d78-e60b-4411-a31c-5734badb8aa0","keyword":"三氯苯","originalKeyword":"三氯苯"},{"id":"f7d400db-c975-45e8-9847-a0281499f768","keyword":"水基切削液","originalKeyword":"水基切削液"},{"id":"046bb451-fecc-488f-b23f-e679ddff9523","keyword":"机械加工废水","originalKeyword":"机械加工废水"}],"language":"zh","publisherId":"sp200901012","title":"分散-微萃取-气相色谱/质谱联用法测定机械加工水基切削液及其废水中的三氯苯","volume":"27","year":"2009"},{"abstractinfo":"以油酸、顺丁烯二酸酐、二乙醇胺为原料,合成了油酸酰胺基非离子表面活性剂 OMA。研究发现,OMA水溶性极好,耐水解能力强,在水中对钢和铸铁有优良的防锈性能,对铜也有一定的防锈效果。用于多效型水基合成切削液中,试验结果满意。","authors":[{"authorName":"王旭珍","id":"2fec652c-1339-4795-b0ad-e12b2fb53a7c","originalAuthorName":"王旭珍"},{"authorName":"徐士良","id":"fd0d24c5-d338-444d-a957-53a5f28cc04f","originalAuthorName":"徐士良"},{"authorName":"张秀香","id":"05b3375c-feac-4ffc-810e-fa49b55dbc70","originalAuthorName":"张秀香"}],"doi":"10.3969/j.issn.1001-1560.2000.08.004","fpage":"9","id":"8c01cae1-2c26-4ac6-a177-803c95f274ab","issue":"8","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"c2b5403e-eec5-479f-a817-3408bba588c2","keyword":"防锈剂","originalKeyword":"防锈剂"},{"id":"0d47e7f0-4343-464e-afec-5968abf86f91","keyword":"油酸","originalKeyword":"油酸"},{"id":"f2b4c476-0467-42cd-bca4-fe368ce2aaa4","keyword":"水溶性油酸酰胺化合物","originalKeyword":"水溶性油酸酰胺化合物"},{"id":"95c2fab7-11e8-4992-b4e9-d21322394b9b","keyword":"水基切削液","originalKeyword":"水基切削液"}],"language":"zh","publisherId":"clbh200008004","title":"水溶性油酸酰胺型防锈剂的合成及在切削液中的应用","volume":"33","year":"2000"},{"abstractinfo":"本文针对金刚石线锯锯微晶玻璃的切削液添加剂:氟化钠、乙二醇和乙二胺进行了研究.通过3因素3水平的正交试验,分析了氟化钠、乙二醇和乙二胺不同添加量对片表面粗糙度和锯效率的影响,初步获得了基于降低表面粗糙度和提高锯效率的切削液配方.在本研究范围内,优化的切削液配方为:在乙二醇体积分数30%、氟化钠质量分数0.1%,切削液pH值为11.5时割性能最佳.","authors":[{"authorName":"杨扬","id":"e273dc48-1570-469f-b5f2-711d85d10f5d","originalAuthorName":"杨扬"},{"authorName":"左敦稳","id":"292526bf-4a3d-42c3-b51d-e2145779d66c","originalAuthorName":"左敦稳"},{"authorName":"孙玉利","id":"c038b903-24ab-4cbc-a3ef-eb3b04dbec85","originalAuthorName":"孙玉利"},{"authorName":"曹连静","id":"5523fd51-7bef-4e8f-959b-f0e65acf7250","originalAuthorName":"曹连静"}],"doi":"","fpage":"155","id":"85275ef2-07f2-4915-a043-1f215b55185c","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"d405d1c0-2b32-4c07-8d8f-b8d8fdf4cd00","keyword":"微晶玻璃","originalKeyword":"微晶玻璃"},{"id":"3101a720-7377-4a2e-a176-4ab7be87027f","keyword":"切削液","originalKeyword":"切削液"},{"id":"371de264-2af3-4647-a863-b2cdccea9771","keyword":"添加剂","originalKeyword":"添加剂"},{"id":"a0562a77-c451-44f2-bb2a-fc4bb49ca379","keyword":"正交试验","originalKeyword":"正交试验"}],"language":"zh","publisherId":"rgjtxb98201301029","title":"微晶玻璃水基切削液及其对切削性能的影响","volume":"42","year":"2013"},{"abstractinfo":"介绍了半合成切削液的性能、用途、研制过程,它具有乳化型及合成型切削液的优点,而没有乳化型及合成型切削液的缺点.经多个用户使用,证明现代半合成切削液具有优良的防锈性、冷却性、润滑性、清洗性及耐腐蚀性能,是一个优良的半合成切削液.","authors":[{"authorName":"范本新","id":"78033331-e1f7-4800-a7b0-a4fc62aa662b","originalAuthorName":"范本新"}],"doi":"10.3969/j.issn.1001-3660.2003.02.024","fpage":"67","id":"2bc4d340-90e0-473f-8ac5-43b82068d7ce","issue":"2","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"d41c1df2-3fc1-495b-95ad-103426961e0b","keyword":"切削液","originalKeyword":"切削液"},{"id":"4c1a3899-bf79-41da-8f5a-5b6a2ab92a99","keyword":"防锈","originalKeyword":"防锈"},{"id":"a5300dcb-507d-4d03-8ea2-824f6963dcbe","keyword":"润滑","originalKeyword":"润滑"},{"id":"48e940f2-2205-4893-9c61-75d35167dee4","keyword":"研制","originalKeyword":"研制"}],"language":"zh","publisherId":"bmjs200302024","title":"现代半合成切削液的研制","volume":"32","year":"2003"},{"abstractinfo":"工程机械结构件在机加工过程中使用大量的水溶性切削液切削液的残留对涂层性能有很大的影响。采用Bresle 法对抛丸后钢材表面残留的水溶性切削液进行取样,测试了样品中盐的总表面浓度和pH,并考察了不同浓度的切削液对涂层附着力和耐盐雾性能的影响。研究发现,钢板机加工序中使用的切削液浓度越大,抛丸后残留在钢板上的盐的总表面浓度越大,导致涂层与钢板的附着力和耐盐雾性能下降。因此,工程机械结构件在抛丸前必须增加清除水溶性切削液的工序。","authors":[{"authorName":"孙曙元","id":"cc49c464-a706-4627-b50e-1dd5d29b5327","originalAuthorName":"孙曙元"},{"authorName":"徐杰","id":"03622f37-0304-48d3-927e-4e3a168b3389","originalAuthorName":"徐杰"},{"authorName":"李东","id":"1eed5278-4696-4c4c-a948-1ecb5080c544","originalAuthorName":"李东"},{"authorName":"侯玉全","id":"174f1146-810b-472c-9f3f-d361ab7b52df","originalAuthorName":"侯玉全"},{"authorName":"郭强","id":"1789709c-f04a-45d3-aacb-96a05be9ad13","originalAuthorName":"郭强"},{"authorName":"张彦松","id":"f82dcb24-0897-4949-805c-6cc7cdf047d8","originalAuthorName":"张彦松"},{"authorName":"黄志远","id":"810d34b6-0427-4bfc-8f0a-bf45599e43f4","originalAuthorName":"黄志远"},{"authorName":"齐祥安","id":"4fad3d89-8938-4ca2-84d8-3886c665950a","originalAuthorName":"齐祥安"},{"authorName":"顾广新","id":"9f5ce349-e174-4efb-8a49-628626289d53","originalAuthorName":"顾广新"}],"doi":"","fpage":"238","id":"bbd24941-4519-4ca8-a6b0-8b7fb616b5fc","issue":"6","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"0208faf4-a50d-4528-826e-babb4f4e0257","keyword":"涂层","originalKeyword":"涂层"},{"id":"bfb20e7e-f9f2-4784-99b6-61192efbb177","keyword":"机加工","originalKeyword":"机加工"},{"id":"04b68465-7933-43b8-9e8e-94d939084919","keyword":"水溶性切削液","originalKeyword":"水溶性切削液"},{"id":"f762b515-5279-48fc-9759-665f7b4974a1","keyword":"盐的总表面浓度","originalKeyword":"盐的总表面浓度"}],"language":"zh","publisherId":"ddyts201406005","title":"水溶性切削液残留物对涂层性能的影响","volume":"","year":"2014"},{"abstractinfo":"探讨了NM-1特效切削液添加剂的制备方法及其摩擦学性能,并与国内外几种同类切削液添加剂做了比较.结果表明:NM-1的摩擦因数显著低于HJ-1(国产)和GM-2(加拿大产),而接近W40(美国产);其耐磨性显著优于HJ-1、GM-2和W40;其承载能力(PB值)高于HJ-1和GM-2,而稍低于W40.","authors":[{"authorName":"徐建生","id":"e217fc18-07be-44b1-baa4-3bb738fa813a","originalAuthorName":"徐建生"},{"authorName":"何家胜","id":"ef3221fc-0f4c-47b7-8937-ae60881debb3","originalAuthorName":"何家胜"},{"authorName":"顾卡丽","id":"05f5e3dd-5fd2-4129-87e9-c6c842b1e4a7","originalAuthorName":"顾卡丽"},{"authorName":"游中流","id":"e7534baa-40e3-4e5c-9142-e13a7615a888","originalAuthorName":"游中流"}],"doi":"10.3969/j.issn.1001-1560.2002.08.004","fpage":"8","id":"5f970195-1d99-420c-bf5e-266180808072","issue":"8","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"ad57220e-a0d4-43ce-b82a-5df05682fefa","keyword":"切削液","originalKeyword":"切削液"},{"id":"8a013217-9d47-4fcb-8ae9-4c4d70c939a2","keyword":"摩擦学性能","originalKeyword":"摩擦学性能"},{"id":"05d3f6f5-59c5-4d57-b5fc-96387ba21855","keyword":"润滑","originalKeyword":"润滑"}],"language":"zh","publisherId":"clbh200208004","title":"特效切削液添加剂的摩擦学特性研究","volume":"35","year":"2002"},{"abstractinfo":"目前铝合金用切削液的抗硬水能力普遍较差,因此使用寿命受到严重影响.针对铝合金的加工特点,研究开发了一种抗硬水的铝合金用合成切削液;参照GB 6144-2010,研究了配制切削液的水质硬度较高时几种防锈剂对灰口铸铁防锈性能的影响;考察了几种缓蚀剂对铝合金的防腐蚀效果,确定了防锈剂和铝缓蚀剂最合适的添加比例.结果表明:合成切削液最优配方为丙二醇嵌段聚醚2.0%,反式聚醚5.0%,改性磷酸酯3.0%,BIT202.5%,BBIT 0.5%,有机硅消泡剂0.2%,三乙醇胺8.0%,苯并三氮唑0.5%,甲基二乙醇胺5.0%,C12M1 1.0%,L190plus 2.0%和MP950MG 0.5%;三元羧酸L190plus与二元羧酸C12Mi共同使用时可有效增强切削液体系的防锈性能,比单独使用时防锈效果改善明显;不同铝合金缓蚀剂的抗硬水能力相差较大,当铝缓蚀剂MP950MG添加量达到0.5%时,就可有效防止铝合金的氧化失色,防腐蚀效果极其明显,且抗硬水性良好.","authors":[{"authorName":"李玮","id":"57d2beec-2945-4c2c-b0d8-7cdf3e115770","originalAuthorName":"李玮"},{"authorName":"马浩","id":"3e6169a1-8803-4080-8788-2a025c037a6b","originalAuthorName":"马浩"},{"authorName":"林广山","id":"a17b746f-a4dc-4e52-8475-53dcc9b9990f","originalAuthorName":"林广山"}],"doi":"","fpage":"21","id":"e0fe88ef-efc4-45c0-95b0-9b439a4acb75","issue":"8","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"5058ada9-0830-4c46-851a-b7d9f012a0de","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"83f85156-890b-4e12-8db4-2d5c1f0e8c1d","keyword":"切削液","originalKeyword":"切削液"},{"id":"f72bf5ff-2888-4d04-8122-b960cd5d0f4f","keyword":"硬水","originalKeyword":"硬水"},{"id":"398a8cf6-bc56-4cfe-9733-44f1f5fd2526","keyword":"防锈剂","originalKeyword":"防锈剂"},{"id":"e8c03b1e-60f1-4ee5-9aae-0ba9a6558b7e","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"}],"language":"zh","publisherId":"clbh201508006","title":"铝合金用抗硬水切削液的研制","volume":"48","year":"2015"},{"abstractinfo":"以菜籽油为原料,甲醇和多羟基化合物为酯交换剂,并以硫粉和P2O5 作为改性剂,合成一种带有极压元素S、P和N的菜籽油基多羟基脂肪酸(酯)化合物.红外光谱分析证实了该化合物中元素硫、磷、氮以及羟基的存在.试验考察了硫化反应的硫化剂添加量、酯交换反应的交换剂与油的摩尔比以及磷酸酯化反应的R-OH与P2O5的摩尔比对产物结构和性能的影响.合成的目标产物可自乳化制成微乳极压切削液,检测2.5%的微乳极压切削液结果表明:该微乳切削液乳化和防锈性能优良,摩擦学的最大无咬卡载荷(PB)为1260N,表面磨斑直径(WSD)和摩擦因数(μ)的最佳值分别为0.33mm和0.039,达到并超过了资料报导目前以油为润滑介质的国内同类产品的性能指标.","authors":[{"authorName":"陈忠祥","id":"daa40bf6-84e6-404c-b1f4-203b4070da3d","originalAuthorName":"陈忠祥"}],"doi":"10.3969/j.issn.1001-3660.2006.06.026","fpage":"69","id":"e3313617-b232-4311-bc03-7059a275e43c","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"bbfc5fdb-2d6b-4f45-81a8-18bd5baa2841","keyword":"微乳化","originalKeyword":"微乳化液"},{"id":"37b20b52-b412-404c-8bd2-e118d0acfda0","keyword":"自乳化","originalKeyword":"自乳化"},{"id":"5a7031ec-f487-47c7-97a0-f4702b5aef8b","keyword":"极压切削液","originalKeyword":"极压切削液"},{"id":"7f946ab1-c578-43b8-952e-b37940ba304c","keyword":"摩檫学性能","originalKeyword":"摩檫学性能"},{"id":"1986c7d7-6416-4fd3-a314-8ffc2aceb552","keyword":"改性菜子油","originalKeyword":"改性菜子油"}],"language":"zh","publisherId":"bmjs200606026","title":"自乳化微乳极压切削液的合成研究","volume":"35","year":"2006"},{"abstractinfo":"开发了一种可生物降解的环保型镁合金微乳化切削液,考察了基础油、缓蚀剂、螯合剂、防锈剂、润滑剂、表面活性剂和其他添加剂对切削液润滑性能的影响,筛选出最优的微乳化切削液配方(以质量分数表示):环烷基基础油30.0%,改性有机醇类螯合剂1.5%,复合缓蚀剂2.5%,三乙醇胺8.0%,长碳链多元羧酸防锈剂5.0%,聚合油酸合成酯润滑剂16.0%,多元油酸合成酯润滑剂6.0%,AEO类脂肪醇聚氧乙烯醚表面活性剂2.5%,脂肪醇聚氧乙烯醚类乳化型低泡表面活性剂3.0%,杀菌剂1.0%,消泡剂0.1%,水24.4%。所开发的镁合金微乳化切削液在润滑、抗硬水、防腐防锈、消泡性能以及使用寿命等各项性能指标方面皆优于市售的Castrol和Master产品,且价格便宜,其生物降解率为92%,抗硬水能力可达8330 mg/L,属于绿色环保、高效实用的镁合金加工专用微乳化切削液。","authors":[{"authorName":"陈郁明","id":"fe885a0b-c680-49b7-aa36-bf03f75eb9e8","originalAuthorName":"陈郁明"},{"authorName":"周建辉","id":"c591845c-8bd5-4040-94f8-8b19af51e263","originalAuthorName":"周建辉"},{"authorName":"周玉成","id":"98f5fb1c-94c0-4c32-9a88-42a805caaae7","originalAuthorName":"周玉成"},{"authorName":"孙雪飞","id":"c26ef063-edb4-4df4-ab10-308e9c1cddc2","originalAuthorName":"孙雪飞"}],"doi":"","fpage":"181","id":"707ec03c-62b8-4ddf-8f72-a77b16cfb128","issue":"4","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"197aa1d1-2d04-4f9f-aefa-cd6cd9393b1d","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"2aa110de-240d-4646-a3dc-40a9d0ac3c71","keyword":"切削液","originalKeyword":"切削液"},{"id":"9f1a9a0d-5a24-46ed-8df7-9b4d8b27cbc5","keyword":"微乳液","originalKeyword":"微乳液"},{"id":"0bb3d103-3765-4a13-bb20-d7cd42dcfdc8","keyword":"制备","originalKeyword":"制备"},{"id":"e9238276-e9a5-4a14-a7e0-d3831c634a3b","keyword":"生物降解","originalKeyword":"生物降解"},{"id":"a0faf000-3b7e-4f16-b211-7e5595c5270b","keyword":"环保","originalKeyword":"环保"}],"language":"zh","publisherId":"ddyts201504004","title":"可生物降解的环保型镁合金微乳化切削液的制备","volume":"","year":"2015"}],"totalpage":2776,"totalrecord":27758}