{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"全面综述了锂离子电池电解液阻燃添加剂的研究进展,并归纳阐述了阻燃添加剂的工作原理。将阻燃添加剂分为有机磷系阻燃添加剂、含氮化合物阻燃添加剂、卤代碳酸酯类阻燃添加剂、硅系阻燃添加剂、复合阻燃添加剂以及阻燃与成膜双功能添加剂。并论述了不同阻燃添加剂的阻燃效果、安全作用机制以及对电池性能的影响,展望了电解液阻燃添加剂在锂离子电池中应用的前景,提出复合阻燃添加剂、双功能添加剂将会成为今后的发展趋势。","authors":[{"authorName":"刘凡","id":"66f51bfd-96a0-4da8-8302-ddde2b003984","originalAuthorName":"刘凡"},{"authorName":"朱奇珍","id":"54a0243a-20d7-4420-bc45-ba3ff23b78ca","originalAuthorName":"朱奇珍"},{"authorName":"陈楠","id":"f3cfc900-97db-4759-97e9-cc2415c646bc","originalAuthorName":"陈楠"},{"authorName":"刘曙光","id":"0a58ec08-b3ad-47de-a537-8dfa5ac39215","originalAuthorName":"刘曙光"},{"authorName":"金翼","id":"178a3895-9c43-40ee-8c3b-064fd3ab7a56","originalAuthorName":"金翼"},{"authorName":"官亦标","id":"ff57df1a-3471-4f7f-8292-d8fdb9a77384","originalAuthorName":"官亦标"},{"authorName":"陈人杰","id":"8314624d-35cd-4470-a2a1-be4b8ba4262c","originalAuthorName":"陈人杰"},{"authorName":"吴锋","id":"b55a55c0-8a63-49a5-93b9-c72c0ed42ae7","originalAuthorName":"吴锋"}],"doi":"10.3969/j.issn.1001-9731.2015.07.002","fpage":"7008","id":"f2d38dd0-d3fc-41b0-bda9-23bf8d78fda1","issue":"7","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e34a27ae-fc4b-4c3d-8502-3e229e45547c","keyword":"安全性","originalKeyword":"安全性"},{"id":"a2f71f7b-c99f-4cec-b6c1-c98f0853acb6","keyword":"电解液","originalKeyword":"电解液"},{"id":"01558233-bea2-4f05-8a42-95dd5a8eb867","keyword":"阻燃剂","originalKeyword":"阻燃剂"}],"language":"zh","publisherId":"gncl201507002","title":"电解液阻燃添加剂研究进展?","volume":"","year":"2015"},{"abstractinfo":"以水性丙烯酸树脂为主成膜剂,水与乙醇为溶剂,辅以不同类型助剂,开发了一种高耐蚀无铬封闭工艺.研究了不同类型硅烷偶联剂、水性丙烯酸树脂及其用量对镀锌层封闭膜外观与耐盐雾时间的影响.结果表明,以酰氧基硅烷为硅烷偶联剂、用量为0.2%,以水性丙烯酸树脂JC-2051为主成膜剂、用量为50%,配合26%水、15%无水乙醇、1.5%水性防锈剂DH-810、0.9%有机胺酯(TPP)、0.9%固化剂Rad2100、1.7%防流挂剂Glide100和3.8%乙二醇丁醚制备的无铬封闭剂,对镀锌层进行封闭后所得到的封闭膜结合力为0级,中性盐雾试验96h内镀锌层不变色.","authors":[{"authorName":"江茜","id":"6b8ab98b-1665-4f47-bc15-ec2203952d1d","originalAuthorName":"江茜"},{"authorName":"胡哲","id":"0f9d0060-7bf5-47b5-86d8-d3351b25abd6","originalAuthorName":"胡哲"},{"authorName":"黎冬瑛","id":"a6d27b98-61a4-4c02-8f09-c18baeae560f","originalAuthorName":"黎冬瑛"},{"authorName":"戴建和","id":"078d2564-4a88-408a-bf1b-397ce6ff3cfe","originalAuthorName":"戴建和"},{"authorName":"杨娟","id":"14b89602-b5ef-4dab-87a9-ec781d8ca050","originalAuthorName":"杨娟"},{"authorName":"王杰","id":"66f4e904-699b-4b80-926a-de026d18a507","originalAuthorName":"王杰"},{"authorName":"陈楠","id":"798d1513-d3fd-461b-9d89-64f7de2e1c4d","originalAuthorName":"陈楠"}],"doi":"","fpage":"1020","id":"71cf0cf6-6527-4164-87c3-8a61d239f2c8","issue":"23","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"b8815758-4448-4235-974c-e070cec38e4d","keyword":"镀锌","originalKeyword":"镀锌"},{"id":"2fab641a-8733-4aa4-87f1-9735e3607f9a","keyword":"无铬封闭","originalKeyword":"无铬封闭"},{"id":"5b940256-c572-4c10-adc9-13fadad3c590","keyword":"水性丙烯酸树脂","originalKeyword":"水性丙烯酸树脂"},{"id":"d68fb570-680f-40a7-9cb2-ae3ac9bb9102","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"ddyts201423006","title":"镀锌层无铬封闭工艺研究","volume":"33","year":"2014"},{"abstractinfo":"酸洗是钛带冷轧前的重要工序之一,首先从酸的浓度及配比、酸洗时间、酸洗温度等方面对热轧退火后钛带卷的酸洗条件进行了实验室探究。结果表明,随着氢氟酸与硝酸体积比的降低,钛带的酸洗失重率逐渐降低,而酸洗所需时间逐渐增加。综合考虑酸洗的效果、速度及成本认为最佳酸洗工艺条件是:酸洗温度为40℃,酸洗液中氢氟酸体积分数为3%、硝酸体积分数为27%,酸洗时间为240 s时,酸洗效果最佳,此时,钛带试样失重率为1.12%。此外,研究发现,酸洗温度为25℃和55℃皆不利于钛带酸洗。之后,工业化试验表明,按照最佳的酸洗工艺条件对工业纯钛带进行酸洗,酸洗效果较好,表面氧化皮可被彻底洗尽。","authors":[{"authorName":"刘自莲","id":"ab2637ee-7908-4524-82cb-8c190d778c11","originalAuthorName":"刘自莲"},{"authorName":"彭金辉","id":"9196f4a8-9194-47ae-8a6c-bf4395e02c75","originalAuthorName":"彭金辉"},{"authorName":"郭胜惠","id":"a2e1fc02-71b9-4fa7-b61d-6a862dfb0c80","originalAuthorName":"郭胜惠"},{"authorName":"常军","id":"1bf4e4fe-3dd5-4736-840a-c872d973cc44","originalAuthorName":"常军"},{"authorName":"曹占元","id":"0d88b43c-4281-4491-976c-89c510b7b70a","originalAuthorName":"曹占元"},{"authorName":"史亚鸣","id":"f2a7c8cd-f37f-40f6-b0e3-03d1a1932340","originalAuthorName":"史亚鸣"},{"authorName":"陈楠","id":"920ee7bd-e657-4a95-b81f-192d762e44ca","originalAuthorName":"陈楠"}],"doi":"","fpage":"19","id":"dcb3c4da-577d-4979-99a1-ee2e7dda4500","issue":"4","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"e49aed6a-fffb-428a-81ce-c30095b8f0b1","keyword":"酸洗","originalKeyword":"酸洗"},{"id":"92ca340e-eeb2-4833-8eb4-705496eb7c89","keyword":"钛带","originalKeyword":"钛带"},{"id":"b1533534-6af5-4b9d-a8c3-03a2465386bb","keyword":"氧化层","originalKeyword":"氧化层"}],"language":"zh","publisherId":"tgyjz201304007","title":"热轧退火钛带酸洗工艺研究","volume":"","year":"2013"},{"abstractinfo":"本文详细介绍了玻璃钢拉挤机各个部分构造和功能.","authors":[{"authorName":"陈楠","id":"b7072512-9bd4-4132-90fe-b9783a02a41b","originalAuthorName":"陈楠"}],"doi":"10.3969/j.issn.1003-0999.1999.05.004","fpage":"13","id":"83ba0756-80a9-4d18-8562-c526aadb0b76","issue":"5","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"900115a6-4e62-4317-9a9d-1fa70d45eccb","keyword":"拉挤机","originalKeyword":"拉挤机"},{"id":"84da2c12-876f-4e4f-b298-d96f8f955bc0","keyword":"玻璃钢","originalKeyword":"玻璃钢"},{"id":"434448f3-ae1c-40dc-94c4-dcdafe37d9a1","keyword":"设备","originalKeyword":"设备"}],"language":"zh","publisherId":"blgfhcl199905004","title":"玻璃钢拉挤设备系统技术概要","volume":"","year":"1999"},{"abstractinfo":"介绍了贵金属含量为0.64~0.78 g·L-1三效催化剂的净化性能,包括实验室评价的空燃比特性曲线和起燃温度特性曲线以及实际装车工况法排放测试,结果表明,即使贵金属含量达到0.71 g·L-1以下,仍能够使吉利豪情、秦川福来尔轿车的污染物排放达到GB18352-2001标准的第二阶段排放要求.对不同贵金属成分的催化剂的净化性能进行了比较和分析.","authors":[{"authorName":"肖彦","id":"d2998562-e6ed-42d8-a2c2-2138e6759f05","originalAuthorName":"肖彦"},{"authorName":"张燕","id":"85d95042-f32b-4454-a957-a9a47477347a","originalAuthorName":"张燕"},{"authorName":"袁慎忠","id":"849849ca-aa8c-48c2-8f48-86b334b98f7c","originalAuthorName":"袁慎忠"},{"authorName":"赵耀武","id":"14d6a029-cabe-4fb6-b750-72fd1c700bf8","originalAuthorName":"赵耀武"},{"authorName":"陈楠","id":"72714e77-5868-43f9-8618-f1cd4dfaefa7","originalAuthorName":"陈楠"},{"authorName":"薛群山","id":"874947d9-2e60-4441-b8bf-620dbf00ecae","originalAuthorName":"薛群山"}],"doi":"","fpage":"575","id":"95410a3d-fdaa-467f-9097-a92bc9eb936a","issue":"4","journal":{"abbrevTitle":"ZGXTXB","coverImgSrc":"journal/img/cover/ZGXTXB.jpg","id":"86","issnPpub":"1000-4343","publisherId":"ZGXTXB","title":"中国稀土学报"},"keywords":[{"id":"0615a8ac-f2e5-4fe7-8e30-17bcbecf6736","keyword":"催化化学","originalKeyword":"催化化学"},{"id":"b5c4d0aa-b8d9-434e-bb3e-5d820f433336","keyword":"低贵金属含量","originalKeyword":"低贵金属含量"},{"id":"7e6c2d9a-9909-4f4a-8fab-785688ab22c9","keyword":"三效催化剂","originalKeyword":"三效催化剂"},{"id":"c3e64a4d-5369-4469-82a8-8d0f4638360c","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"zgxtxb200404032","title":"低贵金属含量三效催化剂的研制","volume":"22","year":"2004"},{"abstractinfo":"在CVD涂层系统中,由于各种材料物理性能的差异,涂层在从沉积温度冷却到室温的过程中会产生热应力,影响膜基之间的附着力.为了考察各种因素对产生热应力的影响,利用热固耦合有限元方法分析了不同沉积条件下硬质合金基体上金刚石膜的热应力情况,还讨论了有不同过渡层的情况.对各情况下的轴向、径向和剪切应力做了比较分析.结果发现沉积温度和金刚石膜厚度对热应力影响较大,而过渡层厚度和物理性能对热应力影响不大.","authors":[{"authorName":"刘炯","id":"a258fd61-76a1-4bf1-ad02-fd1b958c206d","originalAuthorName":"刘炯"},{"authorName":"薛屺","id":"77c36b06-b024-4b3d-9f52-1a108407f19c","originalAuthorName":"薛屺"},{"authorName":"陈楠","id":"0af1fe8f-051f-49b2-932a-cc5491e5128b","originalAuthorName":"陈楠"},{"authorName":"祝媛媛","id":"853b22b5-638f-481e-9aa4-54fa57a34262","originalAuthorName":"祝媛媛"}],"doi":"10.3969/j.issn.1001-3660.2006.06.027","fpage":"72","id":"af570080-2a76-4b1c-aaa7-3c77ae1d4db5","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"ac2d2438-4bf9-4a21-90b8-2edd5809815a","keyword":"热应力","originalKeyword":"热应力"},{"id":"60664d9f-f515-4ad0-8418-4b3d655c00d8","keyword":"金刚石涂层","originalKeyword":"金刚石涂层"},{"id":"c85ce646-7e17-4c0a-b473-3b02f6a8c10a","keyword":"有限元","originalKeyword":"有限元"}],"language":"zh","publisherId":"bmjs200606027","title":"CVD金刚石涂层中热应力的有限元模拟","volume":"35","year":"2006"},{"abstractinfo":"基于大量的高温低周疲劳试验,编写Matlab程序修正voronoi多边形模拟了20钢表面的显微组织;用有限元软件计算得到了不同试验条件下试样表面的应力、应变状态;以基础能量表征晶界及滑移带抵抗裂纹萌生的能力,改进位错累积理论并计算获得了裂纹的萌生寿命,实现了对低碳钢高温低周疲劳短裂纹萌生的数值模拟.结果表明:在高温下,疲劳短裂纹主要萌生于应力集中处的驻留滑移带及不稳定晶界上,受表面显微组织的影响,既有沿晶萌生又有穿晶萌生;修正的voronoi多边形很好地反映了表面显微组织,数值模拟能够准确再现不同循环次数下疲劳短裂纹的群体萌生行为.","authors":[{"authorName":"王正","id":"29c6fea7-e373-448b-86cd-1ca1c4f63e00","originalAuthorName":"王正"},{"authorName":"谭伟同","id":"41e12b16-84e0-4efc-b2e8-e235d1282988","originalAuthorName":"谭伟同"},{"authorName":"王璐","id":"e5cfcb09-d3d2-4aaa-9800-8738be8e58ea","originalAuthorName":"王璐"},{"authorName":"陈楠","id":"2970114a-ceb9-4ce0-807e-e7f22e67f617","originalAuthorName":"陈楠"}],"doi":"","fpage":"90","id":"b5f97d70-fe4e-4e64-976a-0cc5b0371df5","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"9e046ace-175a-474e-95bc-d70f51ba9ac7","keyword":"高温","originalKeyword":"高温"},{"id":"810f460d-a192-464b-82e7-7812551f9681","keyword":"低周疲劳","originalKeyword":"低周疲劳"},{"id":"ec1ebdf2-dac6-4a5a-9e16-1ae079cc28b8","keyword":"短裂纹","originalKeyword":"短裂纹"},{"id":"c42d053b-e1a9-4e74-8e04-2f7e56c06f0e","keyword":"萌生寿命","originalKeyword":"萌生寿命"},{"id":"f771c528-6dc7-4a0a-9203-70f7ad3847d2","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"jxgccl201403020","title":"高温低周疲劳短裂纹萌生的数值模拟","volume":"38","year":"2014"},{"abstractinfo":"综述了耐候钢表面稳定化锈层的形成、组成及其结构,并讨论了影响耐候钢表面锈层稳定化的因素;介绍了主要的锈层稳定化处理技术;同时,指出了耐候钢表面锈层稳定化技术的研究出发点,并对该技术的发展趋势进行了展望.","authors":[{"authorName":"石振家","id":"d4c20a1a-798d-47b2-8b93-a8266179efc0","originalAuthorName":"石振家"},{"authorName":"王雷","id":"4ba04a38-8d2f-4b51-843a-34b10f5fee73","originalAuthorName":"王雷"},{"authorName":"陈楠","id":"724aa65f-f4fe-48c7-bc7f-fd7293975f9a","originalAuthorName":"陈楠"},{"authorName":"郝龙","id":"ee6336fe-9743-494b-9731-5b9329899e39","originalAuthorName":"郝龙"},{"authorName":"董俊华","id":"b4287966-60e4-4d95-9fe2-65bfbf5f1c40","originalAuthorName":"董俊华"},{"authorName":"柯伟","id":"a40a1d27-2950-40d9-bc8f-2047e90fbbe9","originalAuthorName":"柯伟"}],"doi":"10.11903/1002.6495.2014.363","fpage":"503","id":"c6f13866-d682-400f-9ff5-2d2a130f4dd3","issue":"5","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"62d5fbee-7a1b-4d56-9ec6-8bb77faee25a","keyword":"耐候钢","originalKeyword":"耐候钢"},{"id":"3779970f-a1a1-43c4-80b2-39159e7246e2","keyword":"稳定锈层","originalKeyword":"稳定锈层"},{"id":"289f4c69-509e-4392-87f9-01e8a1041564","keyword":"稳定化处理","originalKeyword":"稳定化处理"}],"language":"zh","publisherId":"fskxyfhjs201505016","title":"耐候钢表面锈层及其稳定化处理现状与发展趋势","volume":"27","year":"2015"},{"abstractinfo":"研究了在pH值分别为8,9和10的除氧硼酸缓冲溶液中,低碳钢腐蚀产物对其活化/钝化敏感性的影响.实验结果表明,在pH值为8时,低碳钢一直处于活性溶解状态,不受腐蚀产物影响;在pH值为9和10时,表面腐蚀产物使低碳钢钝化,其腐蚀电位最后稳定于钝化区间.XPS和XRD等分析结果表明,腐蚀产物由FeB(OH)12B4O7和γ-FeOOH组成.腐蚀产物覆盖的低碳钢比裸低碳钢更容易发生钝化.","authors":[{"authorName":"阳靖峰","id":"a764b571-9733-4092-a77e-8e2b593715d9","originalAuthorName":"阳靖峰"},{"authorName":"董俊华","id":"78ad3d96-1b23-49bd-8549-3e043bff6b9b","originalAuthorName":"董俊华"},{"authorName":"柯伟","id":"9cb29f23-68fd-4f9e-a8d1-0826afc36fc7","originalAuthorName":"柯伟"},{"authorName":"陈楠","id":"3dce9b65-7dae-423c-a16e-b19c3afa79e3","originalAuthorName":"陈楠"}],"doi":"10.3724/SP.J.1037.2010.00439","fpage":"152","id":"42866def-b79e-4eb8-89b3-3bfb727dd115","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"de641724-2b23-4eff-a251-e7b325ecb8dc","keyword":"硼酸缓冲溶液","originalKeyword":"硼酸缓冲溶液"},{"id":"7a18925a-58fa-4d8b-8326-1b8823b3a776","keyword":"低碳钢","originalKeyword":"低碳钢"},{"id":"f5861264-2cb2-449e-ac47-7eb74c806e39","keyword":"腐蚀产物","originalKeyword":"腐蚀产物"},{"id":"411253bb-59b9-4d5b-8e1a-2f752fb83999","keyword":"活化/钝化","originalKeyword":"活化/钝化"},{"id":"77295dcf-3d30-4e49-ac42-4c994ddd7df4","keyword":"恒电位制备","originalKeyword":"恒电位制备"}],"language":"zh","publisherId":"jsxb201102004","title":"硼酸缓冲溶液中pH值和腐蚀产物对低碳钢活化/钝化敏感性的影响","volume":"47","year":"2011"},{"abstractinfo":"在硼酸缓冲溶液中,采用动电位极化、电化学阻抗谱(EIS)和半导体电容分析方法分别研究了Cu电极的极化行为及其表面人工Cu2O钝化膜的化学稳定性.结果表明,低pH值,高Cl-浓度均造成Cu2O钝化膜的破坏和溶解.高Cl-浓度时,Cu2O钝化膜的半导体性质由P型转变为n型,使Cl-更容易进入钝化膜与Cu+络合,并破坏钝化膜从而加速腐蚀.高pH值、低Cl-浓度有利于Cu2O钝化膜稳定.","authors":[{"authorName":"王长罡","id":"63219acd-92dc-4ad6-96f8-59f2c8c928b7","originalAuthorName":"王长罡"},{"authorName":"董俊华","id":"c2ebd110-d108-486d-baa7-26735893699e","originalAuthorName":"董俊华"},{"authorName":"柯伟","id":"51eb93bb-0144-4ecb-84d5-6df9bf28f814","originalAuthorName":"柯伟"},{"authorName":"陈楠","id":"db87372a-23d1-470f-927b-6612934ad940","originalAuthorName":"陈楠"}],"doi":"10.3724/SP.J.1037.2010.00440","fpage":"354","id":"9f8f8189-c60e-4631-9839-1ee347910358","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"9a4c6318-e068-4e21-a01e-0a576d7a0011","keyword":"高放废物地质处置","originalKeyword":"高放废物地质处置"},{"id":"4e8aa472-c1c7-4a08-8544-0a613f262cff","keyword":"Cu2O钝化膜","originalKeyword":"Cu2O钝化膜"},{"id":"a4aa87ab-ebde-4fbe-95d3-d48c023ced8b","keyword":"稳定性","originalKeyword":"稳定性"},{"id":"e4d5015a-ec61-44ab-b319-6d3eb9a5e05c","keyword":"电化学阻抗谱(EIS)","originalKeyword":"电化学阻抗谱(EIS)"},{"id":"47e681bc-e4f6-42e1-9b25-f3b3b35eb290","keyword":"Mott-Schottky方法","originalKeyword":"Mott-Schottky方法"}],"language":"zh","publisherId":"jsxb201103017","title":"硼酸缓冲溶液中pH值和Cl-浓度对Cu腐蚀行为的影响","volume":"47","year":"2011"}],"totalpage":5,"totalrecord":47}