{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以聚乙烯吡咯烷酮(PVP)为偶联剂,利用超声化学法制备了PS/CdS核壳型复合纳米粒子.为了深入理解核壳型纳米粒子的界面行为和形成机制,详细考察了PVP加入与否及用量、前体加入顺序、Cd2+与S2-摩尔比和反应时间等实验参数对核壳复合材料结构的影响.结果表明,适量PVP可改善CdS纳米粒子与PS聚合物基体间的亲和性,增强壳与核之间的相互作用,成功地将PS与CdS复合成单分散的、壳层完整且厚度可控的三维核壳型PS/CdS纳米复合粒子;且复合物比纯CdS粒子具有更高的可见光响应活性.","authors":[{"authorName":"","id":"c8795ff1-52b6-475d-8f68-aa046d2f38b0","originalAuthorName":"王涵"},{"authorName":"郑星","id":"44bf1cd0-3971-4dcb-b7b8-1eb435237edd","originalAuthorName":"郑星"},{"authorName":"张文华","id":"6b199b66-e0af-4c3f-a82b-9ffa971e9f09","originalAuthorName":"张文华"},{"authorName":"江波","id":"4c2e0c60-fce5-490f-87f3-84f9d877a8ab","originalAuthorName":"江波"},{"authorName":"朱超胜","id":"265203dd-c762-494d-9e6e-162e947d3f14","originalAuthorName":"朱超胜"},{"authorName":"靳婷婷","id":"adf9b386-2583-43c2-8ac6-9a0fac039115","originalAuthorName":"靳婷婷"},{"authorName":"郑经堂","id":"649260fd-5a39-4f88-832e-9f6709140d16","originalAuthorName":"郑经堂"},{"authorName":"吴明铂","id":"d61eb049-1044-45a8-a97e-6d3dab86cbdc","originalAuthorName":"吴明铂"},{"authorName":"薛庆忠","id":"d4777baa-d59a-4443-94e4-af9dab2e1c2a","originalAuthorName":"薛庆忠"}],"doi":"","fpage":"181","id":"7fe723b1-0e34-433f-84db-48b1d9823bc4","issue":"11","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"add300c7-ede6-4992-9ed3-35a77f2e51c0","keyword":"聚乙烯吡咯烷酮","originalKeyword":"聚乙烯吡咯烷酮"},{"id":"7063b26f-bd1e-4855-b03e-71bdcdc11ad6","keyword":"核壳结构","originalKeyword":"核壳结构"},{"id":"8839b1fa-6bf7-4c16-bbe3-ccfffae94df3","keyword":"偶联剂","originalKeyword":"偶联剂"},{"id":"9ab1983c-0693-44b7-b16d-93df8744da73","keyword":"界面行为","originalKeyword":"界面行为"}],"language":"zh","publisherId":"gfzclkxygc201511036","title":"PVP为偶联剂制备核壳型PS/CdS纳米复合粒子及表征","volume":"31","year":"2015"},{"abstractinfo":"采用成熟工艺制备了N型、P型调制掺杂型Si80Ge20基固溶体合金及等化学计量比的均匀掺杂型Si80Ge20基固溶体合金,重点研究了两类固溶体合金的热电性能.结果表明:温度为773 K时,N型系列、P型系列,调制掺杂型固溶体合金较均匀掺杂型的功率因子分别提高了13.6%和49.2%,热电优值ZT分别提高了7.9%和12.9%.","authors":[{"authorName":"龚晓钟","id":"2563700e-38f7-46cd-8796-3ba1f3b2cde1","originalAuthorName":"龚晓钟"},{"authorName":"吴振兴","id":"a7ea19f0-d514-4930-a6f0-c9cb89048406","originalAuthorName":"吴振兴"},{"authorName":"刘正楷","id":"86125ccf-e6d3-452e-a9e0-2df21e854d9e","originalAuthorName":"刘正楷"},{"authorName":"","id":"a85916df-fdcc-4f21-a2df-c10aef80779f","originalAuthorName":"王涵"},{"authorName":"彭雨辰","id":"ace08249-40b2-498b-a31b-d382aa66569b","originalAuthorName":"彭雨辰"},{"authorName":"汤皎宁","id":"05c4fc49-719f-4ba2-a6d0-7eb81aa13a73","originalAuthorName":"汤皎宁"}],"doi":"","fpage":"2490","id":"16e5436d-031f-4d20-a81c-b2e0361a34bd","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"dcd30f56-8f51-4f61-89a0-09e5d227bb15","keyword":"热电材料","originalKeyword":"热电材料"},{"id":"9bd0cacc-86be-4596-802f-639b5ea78ded","keyword":"Si80Ge20固溶体合金","originalKeyword":"Si80Ge20固溶体合金"},{"id":"cd5efa89-cad9-41b4-8e36-9e1ecfe69dfb","keyword":"功率因子","originalKeyword":"功率因子"},{"id":"f941ad1c-16ef-4970-9c10-dd4e7afcd19f","keyword":"热电性能","originalKeyword":"热电性能"},{"id":"d02a535e-472a-4aa2-acc3-acc4bf472211","keyword":"调制掺杂","originalKeyword":"调制掺杂"}],"language":"zh","publisherId":"xyjsclygc201312015","title":"增强调制掺杂Si80Ge20基热电材料功率因子的研究","volume":"42","year":"2013"},{"abstractinfo":"将纳米MnO2催化剂粉末负载到自制的含活性炭的腈氯纶纤维上,在室温下对甲醛进行吸附分解研究。借助扫描电子显微镜(SEM)进行显微结构观察,并分析了不同处理情况的负载纤维对甲醛的去除率。结果表明,研磨6h的MnO2粉末分散均匀,平均粒径可达300 nm,以平铺的形式均匀地负载于纤维上;研磨6h的MnO2粉末反应72h对甲醛的去除率达94.07%;二甲基甲酰胺(DMF)处理后的纤维对甲醛的去除率有所提高。","authors":[{"authorName":"","id":"3a9c7425-bd5d-40c8-8925-3fdcd7a0e328","originalAuthorName":"王涵"},{"authorName":"张华","id":"ca4f64fc-80dc-4881-875a-b952165044cf","originalAuthorName":"张华"},{"authorName":"张文华","id":"442a2731-5e62-433a-84a0-d6501c534500","originalAuthorName":"张文华"},{"authorName":"任志龙","id":"72a96ee3-d19a-49fd-b9df-ccca18a56e15","originalAuthorName":"任志龙"},{"authorName":"韩文清","id":"527a10f1-36db-489f-b7c9-d4cfccdb2323","originalAuthorName":"韩文清"}],"doi":"","fpage":"158","id":"28b05c69-437e-4f33-ab2a-26adeac23b1b","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"d16db49f-595e-4114-a6f3-9c5b1d42de1a","keyword":"二氧化锰","originalKeyword":"二氧化锰"},{"id":"daa9ea43-34d6-4345-9d85-a7158cb5ca8b","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"e48b74d2-d3aa-4981-bcf4-0e9f610ad7c2","keyword":"纤维","originalKeyword":"纤维"},{"id":"6dc7ac40-ee6b-4d39-8dda-5905abcac575","keyword":"甲醛","originalKeyword":"甲醛"},{"id":"fd0b7761-72c2-4c95-b581-261216ea5362","keyword":"吸附","originalKeyword":"吸附"}],"language":"zh","publisherId":"gfzclkxygc201201056","title":"负载纳米MnO_2的吸附纤维室温下对甲醛的吸附分解","volume":"28","year":"2012"},{"abstractinfo":"对N型Si80Ge20(P4)x及P型Si80Ge20Bx固溶体合金的化学计量比进行了研究,采用已总结出的最佳工艺条件,制备了一系列N型、P型固溶体合金,并比较了各系列样品的热电性能.结果表明,x=1.5的N型Si80Ge20(P4)x固溶体合金具备良好的热电性能,与未掺杂Si80Ge20固溶体合金相比,最高热电优值ZT为0.651,提高了3.34倍.x=1.5的P型Si80Ge20Bx固溶体合金也具备较佳的热电性能,最高热电优值(ZT)值为0.538.","authors":[{"authorName":"毛斐","id":"c20ac18a-a2bb-4da5-931b-c3a70e4686b8","originalAuthorName":"毛斐"},{"authorName":"吴振兴","id":"70900cd6-8983-42db-b4d4-c8ba5f91f9ce","originalAuthorName":"吴振兴"},{"authorName":"汤皎宁","id":"a66f91c6-2e7e-4bb0-b817-d900360f102c","originalAuthorName":"汤皎宁"},{"authorName":"","id":"f00d1ef9-8560-403a-8b50-b9f2e56cfdd5","originalAuthorName":"王涵"},{"authorName":"刘正楷","id":"a754afa3-2150-4ee7-9882-dc2d04956420","originalAuthorName":"刘正楷"},{"authorName":"龚晓钟","id":"fd846d93-76ad-45a3-9979-1e6ec1483bc0","originalAuthorName":"龚晓钟"}],"doi":"","fpage":"6","id":"50a515d5-9656-4ab9-9841-f9e9592ba332","issue":"7","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"5de692af-dec2-4d4a-b0de-f82cb5bde40a","keyword":"热电材料","originalKeyword":"热电材料"},{"id":"4997c3ff-0488-48e0-83b9-4bd5d684d0cc","keyword":"Si80Ge20","originalKeyword":"Si80Ge20"},{"id":"aeced09a-bafb-46ff-b07f-c3d14b67ea09","keyword":"粉末冶金","originalKeyword":"粉末冶金"},{"id":"6c7cce7b-52d5-430b-b124-267e4707d97e","keyword":"热电性能","originalKeyword":"热电性能"}],"language":"zh","publisherId":"jsrclxb201307002","title":"N型和P型Si80Ge20合金制备及热电性能","volume":"34","year":"2013"},{"abstractinfo":"以壳聚糖/蒙脱土插层复合物为载体,吸附法制备固定化多酚氧化酶,并以此催化氧化去除水中的苯酚、4?氯苯酚和2,4?二氯苯酚.考察了固定化多酚氧化酶的制备条件,对酚类化合物的催化氧化条件、动力学特性以及固定化酶的重复使用性能.结果表明,固定化多酚氧化酶的最佳制备条件为pH 5.0,酶与载体质量比20 mg·g-1,固定化6 h,所得固定化酶的载酶量为12.12 mg·g-1,每克单位载体酶活为12.76×103 U·g-1.固定化多酚氧化酶对酚类化合物的最佳去除条件为:苯酚溶液pH 7.0,温度30℃;4?氯苯酚溶液pH 5.0,温度20℃;2,4?二氯苯酚溶液pH 5.0,温度30℃.在最佳反应条件下,酶与底物质量比为20 mg·mg-1时,固定化多酚氧化酶对苯酚、4?氯苯酚和2,4?二氯苯酚溶液去除率分别为63.6%、85.8%和87.8%.苯酚、4?氯苯酚和2,4?二氯苯酚的米氏常数Km值依次减小,最大反应速率Vmax依次增大,表明固定化酶对2,4?二氯苯酚的亲和力最强,催化速度最快.固定化酶循环使用6次(24 h)后对苯酚、4?氯苯酚和2,4?二氯苯酚的去除率分别为15.7%、24.2%和27.8%.","authors":[{"authorName":"","id":"13f70c5c-8b36-4a75-9086-7652ca3b3932","originalAuthorName":"王涵"},{"authorName":"李瑾","id":"3eba4bc2-d0c0-40ce-b460-3bacaec771dd","originalAuthorName":"李瑾"},{"authorName":"程华丽","id":"483abbcf-aeed-416b-afc6-b72e06f0efef","originalAuthorName":"程华丽"},{"authorName":"马启敏","id":"c33bcd07-ace4-4090-97ee-6631ee122967","originalAuthorName":"马启敏"}],"doi":"10.7524/j.issn.0254-6108.2015.03.2014072203","fpage":"571","id":"6c84cdca-b9a6-4e2d-8ce6-542595612bf5","issue":"3","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"7a29948d-48b6-4e30-9345-29cd85f783b5","keyword":"多酚氧化酶","originalKeyword":"多酚氧化酶"},{"id":"3f6e7484-cf9b-4903-8b8b-1dede79e0015","keyword":"壳聚糖","originalKeyword":"壳聚糖"},{"id":"b1968725-6b75-40a8-a0c4-4ca0fe35880e","keyword":"蒙脱土","originalKeyword":"蒙脱土"},{"id":"b8c6e902-8a08-4e1b-b6a0-89e65fdda3bc","keyword":"酚类化合物","originalKeyword":"酚类化合物"}],"language":"zh","publisherId":"hjhx201503023","title":"固定化多酚氧化酶对水中苯酚和氯酚的去除?","volume":"","year":"2015"},{"abstractinfo":"以氧氯化锆生产排放的酸性锆硅渣为主要原料,经脱酸除杂得到硅凝胶,按nCaO∶ nSiO2=1:1、W∶S(水/固质量比)=30∶1与消石灰加水混合均匀,采用动态水热法合成硬硅钙石.利用XRD、FT-IR、SEM等方法,研究了硬硅钙石的合成条件和合成机理.结果表明,锆硅渣经消石灰中和水洗可有效脱酸除杂,并可降低硅凝胶的[SiO4]4-聚合度,提高其反应活性.用此硅凝胶作硅源,在200℃下反应6h即可合成长径比为40~60的纯相纤维状硬硅钙石.反应过程中,硬硅钙石系由CSH凝胶直接转化而成,未经历托贝莫来石相的过渡.","authors":[{"authorName":"苏振","id":"ac37023d-30da-4c44-a8f7-51f1b113687f","originalAuthorName":"苏振"},{"authorName":"杨赞中","id":"e345c8af-f835-4e8f-8a56-b6503d1626a0","originalAuthorName":"杨赞中"},{"authorName":"赵田田","id":"0359607a-669e-4dc8-ab08-f6a11f76b731","originalAuthorName":"赵田田"},{"authorName":"","id":"550ad0d9-3a0f-490b-ad9c-6f45b6b0a5d6","originalAuthorName":"王涵"}],"doi":"","fpage":"997","id":"80a95506-4100-4d86-afab-4dce36c451ed","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"bcd76d0a-f10c-4c71-b917-ec0377694a7a","keyword":"动态水热法","originalKeyword":"动态水热法"},{"id":"09a838df-570c-43c3-9da6-59d40b7891db","keyword":"锆硅渣","originalKeyword":"锆硅渣"},{"id":"b80306c0-43db-4cf6-a014-0a3c41e351de","keyword":"硬硅钙石","originalKeyword":"硬硅钙石"},{"id":"eb42ef61-4227-4c6c-bf9c-321f0c83652c","keyword":"[SiO4]4-聚合度","originalKeyword":"[SiO4]4-聚合度"},{"id":"14a98000-aaba-430c-8ddc-1c343736d2b0","keyword":"合成机理","originalKeyword":"合成机理"}],"language":"zh","publisherId":"rgjtxb98201404047","title":"锆硅渣动态水热合成硬硅钙石的研究","volume":"43","year":"2014"},{"abstractinfo":"以纯度为99.9%的镁粉为原料,采用惰性气体冷凝法来制备镁纳米颗粒,研究了蒸发温度及沉积位置对镁纳米颗粒形貌和尺寸的影响.结果表明,蒸发温度为600℃时,在冷阱最前端得到了直径为10~50 nm的镁纳米颗粒,纳米颗粒之间相互连接呈链状形态,并且在镁纳米颗粒之间发现了镁纳米线.结果还表明,随着蒸发温度升高,得到的镁纳米颗粒尺寸增大;随着沉积位置的变化,其镁纳米颗粒尺寸也发生规律性变化.根据气/固相变理论及机制,对镁纳米颗粒的形成过程进行了解释,提出了相应的镁纳米颗粒的形成模型.","authors":[{"authorName":"","id":"44097cd9-7982-4491-93ee-49b27e43b9c3","originalAuthorName":"王涵"},{"authorName":"宋西平","id":"fa6339f6-2a2f-4471-8083-e72ce37594d4","originalAuthorName":"宋西平"},{"authorName":"窦娜娜","id":"b3ddb81d-d2a1-4b40-b1f8-1906c5f6a4d5","originalAuthorName":"窦娜娜"},{"authorName":"李如峰","id":"ba4d426d-0085-43d7-befd-2f3d5597651c","originalAuthorName":"李如峰"},{"authorName":"张蓓","id":"30d037d6-ebf8-431a-8628-ec135f3e992d","originalAuthorName":"张蓓"}],"doi":"","fpage":"164","id":"ea992538-66f6-469f-9849-782a8e544339","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"0726695b-1fc0-4378-92ca-83dc228303c9","keyword":"惰性气体冷凝法","originalKeyword":"惰性气体冷凝法"},{"id":"93b571d7-c6d4-4c17-8254-f4fe06f88e03","keyword":"镁","originalKeyword":"镁"},{"id":"6077a6df-4caa-41e0-8314-9865ea08f7e5","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"8dba7872-9728-4012-a8b2-4aac4042ba7b","keyword":"纳米线","originalKeyword":"纳米线"}],"language":"zh","publisherId":"xyjsclygc201501031","title":"惰性气体冷凝法制备镁纳米颗粒的工艺及机制","volume":"44","year":"2015"},{"abstractinfo":"本文对内涵高低压三级涡轮、涡轮出口支板通道、外通道以及内外混合段流动进行联立计算,给出了流场结构和流动分析.结果表明:联立数值模拟十分必要,是考察多部件匹配特性的有效手段.数值模拟的结果还表明:涡轮与支板的匹配不太理想,但气体通过支板后,仍能够接近轴向出气;混合段内外流动掺混作用并不强烈,由于掺混带来的气动损失并不严重.","authors":[{"authorName":"杨琳","id":"053d1cc1-4ea1-4e31-b50c-f6c3d55e9be9","originalAuthorName":"杨琳"},{"authorName":"刘火星","id":"c65c1356-937b-41b2-8c0d-411d724429d2","originalAuthorName":"刘火星"},{"authorName":"邹正平","id":"c9782795-0264-41b5-95c7-b7c73613c89b","originalAuthorName":"邹正平"},{"authorName":"李维","id":"ceddb533-21c1-49e8-adb7-eab4de3c1c4c","originalAuthorName":"李维"}],"doi":"","fpage":"39","id":"b28ac5ba-6854-49c4-b4e8-a17aa03a1c3a","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"512b4656-e338-42e0-8905-ec566ab16599","keyword":"内外","originalKeyword":"内外涵"},{"id":"3697d4b9-2a43-4e2e-94ec-70ed7258db35","keyword":"涡轮","originalKeyword":"涡轮"},{"id":"e725fcbe-44fa-4f04-8dac-75268e6fa941","keyword":"支板","originalKeyword":"支板"},{"id":"bc177a4f-5313-4f07-8770-b79a9745901f","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"50995557-d344-46b2-b768-4d324d5de3a5","keyword":"匹配","originalKeyword":"匹配"}],"language":"zh","publisherId":"gcrwlxb200601012","title":"涡轮内外联立数值模拟","volume":"27","year":"2006"},{"abstractinfo":"结合河北承德某工程实际,对工程中涵洞选用FRPM管的标段进行车辆静载试验,以研究其受力状况,为实际工程做指导.FRPM管的受力状况与不同填土高度及荷载作用密切相关,为此依据现场试验所得管道受力特征,在平面应变条件下,采用ABAQUS建立的管-土相互作用模型对现场试验进行数值模拟,利用数值分析的方法,以减少传统试验在人力、物力上的耗费.研究结果表明,在最小填土0.5m,不同车辆荷载作用下,管最大变形为1.3mm,管受力较好;试验与模拟结果一致性较好,验证了所建模型的正确性.","authors":[{"authorName":"魏连雨","id":"acd87c56-5597-4be0-ace0-e91e22424b39","originalAuthorName":"魏连雨"},{"authorName":"张国盘","id":"05b4395d-f9ea-4a26-ac42-dda7ee4004fb","originalAuthorName":"张国盘"},{"authorName":"张济源","id":"b149d6dc-f472-4017-b2b0-87783e559aa0","originalAuthorName":"张济源"},{"authorName":"金伟","id":"50474059-df75-4084-9dde-984440ae7bed","originalAuthorName":"王金伟"},{"authorName":"陈兆南","id":"3feef878-ffd3-4664-b659-148b11bfb01e","originalAuthorName":"陈兆南"}],"doi":"","fpage":"73","id":"aa019488-7d9e-4768-a7f9-9e758e4516de","issue":"8","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"0fbd2d54-12bb-4403-a2bb-b7422b831404","keyword":"FRPM管","originalKeyword":"FRPM管"},{"id":"e14da0b2-4d60-4e2b-8d62-d631d7cefabf","keyword":"静载试验","originalKeyword":"静载试验"},{"id":"a5f9fb9e-afe6-4722-a0b7-d75a432deee6","keyword":"力学特性","originalKeyword":"力学特性"},{"id":"fd8eef33-ee04-4e4f-bb32-c45f192a2e1e","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"blgfhcl201608013","title":"FRPM管力学特性试验与数值模拟研究","volume":"","year":"2016"},{"abstractinfo":"在双道叶轮机风扇和压气机的设计中,本文将风扇及内外叶片的S2流面反问题统一起来,而成为一个统一的双道叶轮机S2流面反问题.在分处,采用一列重叠网格,用来传递分处上游和下游的流场信息,分流机匣最前面的点既是内涵的计算点,又是外的计算点,以该点的压力值作为收敛的判断依据,通过改变分流比,使计算得到的两个压力值相等,分流机匣前的流线平滑,从而得到合适的流场.本方法适用于较复杂的双道叶轮机设计,风扇和内外叶片排数理论上都不受限制.","authors":[{"authorName":"刘锡阳","id":"db1a712e-3dfc-4cd9-990b-4259451635f4","originalAuthorName":"刘锡阳"},{"authorName":"温泉","id":"4c10337f-ed16-4f29-9566-ef9d10a51894","originalAuthorName":"温泉"},{"authorName":"赵晓路","id":"f8cc28e5-3642-4693-9a83-82a481a5139a","originalAuthorName":"赵晓路"}],"doi":"","fpage":"417","id":"a85c67ee-489d-46ca-82b4-02dde313f198","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9be0f25b-42dc-4d61-92b0-358ac1236bb8","keyword":"航空、航天推进系统","originalKeyword":"航空、航天推进系统"},{"id":"0f891756-abc7-4b8c-8ef6-c9ae3201acef","keyword":"双道叶轮机械","originalKeyword":"双涵道叶轮机械"},{"id":"6f9896c6-9191-4011-a145-3be448c67472","keyword":"S2流面","originalKeyword":"S2流面"},{"id":"94054bfd-53b1-4d2b-bce8-4f9c50a1ce3a","keyword":"流函数","originalKeyword":"流函数"}],"language":"zh","publisherId":"gcrwlxb200603018","title":"双道叶轮机S2流面反问题计算方法","volume":"27","year":"2006"}],"totalpage":9,"totalrecord":83}