欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(1)
  • 图书()
  • 专利()
  • 新闻()

基于偏最小二乘法的BP网络预测钢筋的屈服强度

景琳琳 , 袁守谦 , 李都宏

物理测试

将偏最小二乘法与BP人工神经网络结合,建立了一种新的预测模型:PLS-BP神经网络模型。模型应用偏最小二乘法来提取主成分R及得分T,根据交叉有效性检验和留N法来确定PLS的成分个数,PLS-BP网络的输入数目和网络隐含层的节点数目,最终确定网络的结构为6-11-1。应用该模型可以有效地避免几个因素之间的多重相关性问题,同时也能更好地解决非线性问题,克服了偏最小二乘和单纯BP网络的缺点。在钢筋屈服强度的预测中表明,应用PLS-BP模型预测的误差均小于1.03%,比应用于偏最小二乘回归模型的误差6.19%要小得多,并且预测值和实际值比较吻合。

关键词: 偏最小二乘法 , BP神经网络 , 屈服强度

出版年份

刊物分类

相关作者

相关热词