李盼池
,
李士勇
量子电子学报
doi:10.3969/j.issn.1007-5461.2007.04.013
提出一种量子自组织特征映射网络模型及聚类算法.量子神经元的输入和权值均为量子比特,输出为实数,量子自组织特征映射网络由输入层和竞争层组成.首先将聚类样本转换成量子态形式并提交给输入层,完成聚类样本的输入;然后计算样本量子态与相应权值量子态的相似系数,提取聚类样本所隐含的模式特征,并对其进行自组织,在竞争层将聚类结果表现出来.采用量子门更新量子权值,分无监督和有监督两个阶段完成网络的训练.仿真实验结果表明该模型及算法明显优于普通自组织特征映射网络.
关键词:
量子光学
,
量子自组织特征映射网络
,
量子聚类算法
,
量子神经元
李士勇
,
李盼池
量子电子学报
doi:10.3969/j.issn.1007-5461.2007.05.008
为提高粒子群算法的搜索能力和优化效率并避免早熟收敛,将量子进化算法融合到粒子群算法中,提出一种求解连续空间优化问题的量子粒子群优化算法.用量子位的概率幅对粒子位置编码,用量子旋转门实现粒子移动,完成粒子搜索;用量子非门实现变异,提高种群多样性.因每个量子位有两个概率幅,故每个粒子同时占据空间两个位置,在粒子数目相同时,能加速粒子的搜索进程.实验结果表明,本算法优于基本粒子群算法.
关键词:
量子光学
,
粒子群优化
,
量子优化
,
量子计算