{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过对转炉顶吹CO2的热力学分析,结合实验室模拟转炉顶吹O2+CO2混合气体试验结果,确立了CO2在转炉中应用的关键参数。得出在转炉中顶吹纯CO2虽可脱碳,但温降较大,顶吹CO2供气强度为3.0 m3/(t·min)时,钢液温降速率为15.1℃/min;通过喷吹O2+CO2混合气体可实现温度平衡,但CO2配比的最大理论比例为79.1%;随着混合气体中CO2比例增大,吹炼终点钢液碳氧积降低,当φ(CO2)∶φ(O2)=1∶1时可控碳氧积为(25~32)×10-8。","authors":[{"authorName":"万雪峰","id":"66fd5014-666b-4702-bdc7-4882a9c1e1e3","originalAuthorName":"万雪峰"},{"authorName":"曹东","id":"1e94dd82-9343-4856-bfc6-224024f0b6e3","originalAuthorName":"曹东"},{"authorName":"刘祥","id":"854e9492-03a7-4d97-b110-07e58f9b9f4b","originalAuthorName":"刘祥"},{"authorName":"朱晓雷","id":"cc6ebe59-7272-4771-90ac-ef32ca63ce74","originalAuthorName":"朱晓雷"},{"authorName":"廖相巍","id":"2ec1dd8e-4428-4d69-8fb2-7ab475c3dfa1","originalAuthorName":"廖相巍"}],"doi":"10.13228/j.boyuan.issn0449-749x.20140282","fpage":"30","id":"53faa42b-fc85-40af-bfb5-e34a32699aa5","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"81f577b7-b09f-4cdb-9ba4-1d8d3176f82f","keyword":"CO2","originalKeyword":"CO2"},{"id":"14e7ff72-b854-4010-82fb-1f19bf2b3b35","keyword":"转炉","originalKeyword":"转炉"},{"id":"11eed776-456f-4f65-af72-479b31265af8","keyword":"混合喷吹","originalKeyword":"混合喷吹"},{"id":"f013f5c5-6881-4fa6-8675-52868e664c71","keyword":"碳氧积","originalKeyword":"碳氧积"}],"language":"zh","publisherId":"gt201505007","title":"转炉应用CO2技术","volume":"","year":"2015"},{"abstractinfo":"分离CO2是当前能源和环境领域的最重要的课题之一.膜分离法在投资、能耗以及环境友好方面优于传统方法,文章提出了CO2分离膜的4种选择透过机制,着重论述了国内外在分离CO2膜技术方面的研究现状,介绍了本课题组在分离CO2反应选择膜方面的研究成果,并进一步探讨了分离CO2膜技术的未来发展趋势.","authors":[{"authorName":"王志","id":"5eac3bce-fe96-4d93-9b69-695416af84ef","originalAuthorName":"王志"},{"authorName":"袁芳","id":"a2e77a47-cc0a-4617-935b-9d16aa6ebd31","originalAuthorName":"袁芳"},{"authorName":"王明","id":"5f65392e-3bcb-44a7-8801-e96b6d0575e6","originalAuthorName":"王明"},{"authorName":"王纪孝","id":"bbe3b646-3db1-4b0a-bbbd-98adbbb11897","originalAuthorName":"王纪孝"},{"authorName":"王世昌","id":"95f24f9b-a1b4-4a2f-ab5a-62c802db4d22","originalAuthorName":"王世昌"}],"doi":"10.3969/j.issn.1007-8924.2011.03.003","fpage":"11","id":"246fd4b2-ec63-430c-a442-599e44c6223d","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"23005b88-0a07-44c1-a701-ff2f9513da9c","keyword":"CO2","originalKeyword":"CO2"},{"id":"5915c53b-beb1-4464-b624-af7d2e0255fa","keyword":"捕集","originalKeyword":"捕集"},{"id":"5ac041ca-3ec5-4324-82bd-30585cb25f61","keyword":"膜分离","originalKeyword":"膜分离"},{"id":"b4042cbc-2f1f-4873-9677-1d059976a82f","keyword":"选择透过机制","originalKeyword":"选择透过机制"}],"language":"zh","publisherId":"mkxyjs201103003","title":"分离CO2膜技术","volume":"31","year":"2011"},{"abstractinfo":"为了解杂质气体对钯柱氢氘排代性能的影响程度,利用快排代法考察了排代氢中添加CO,O2,CH4,CO2等气体后室温下钯柱氢氘排代效率的变化情况,并测量了钯表面O2,CO,CH4的等温吸附曲线.结果表明:H2中仅加入10 μL/L的CO,排代性能已显著下降,随CO含量的增加,排代性能随之显著降低,当CO含量增至3000 μL/L时将几乎没有排代效果;O2的影响比CO弱,H2中含3000 μL/L的O2时排代性能约下降20%;然而当H2中含3000 μL/L的CO2时排代性能约下降3.2%;CH4的影响则相对可忽略.","authors":[{"authorName":"张桂凯","id":"44ae16e7-e2a9-4833-84d9-ea2a1c43b428","originalAuthorName":"张桂凯"},{"authorName":"陆光达","id":"68b80b6e-4047-445f-8ae3-c05564929025","originalAuthorName":"陆光达"},{"authorName":"陈虎翅","id":"e0f6dc55-a2b8-4768-bbf3-8b33ae632d45","originalAuthorName":"陈虎翅"},{"authorName":"银陈","id":"0a01ba3e-1ebb-48c6-bc02-d39d5fc1a3cd","originalAuthorName":"银陈"}],"doi":"","fpage":"1106","id":"f35f5ea4-6c1a-4f42-925d-66e2797188af","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"cca81429-225f-41ec-a0b3-bba030425727","keyword":"氢同位素","originalKeyword":"氢同位素"},{"id":"328caf1c-146d-48ad-8812-0cd47519884e","keyword":"排代","originalKeyword":"排代"},{"id":"9475334e-739b-481e-a5fb-6232c3b84006","keyword":"钯","originalKeyword":"钯"},{"id":"ec38ed82-f47a-403f-b935-4e56ba824703","keyword":"CO","originalKeyword":"CO"},{"id":"1ca66579-bcf6-4f3d-be3c-7fdeb9a03a72","keyword":"O2","originalKeyword":"O2"},{"id":"5c135ff3-75fa-4d89-a51d-2bc234205144","keyword":"CH4","originalKeyword":"CH4"},{"id":"9b5a87ac-b0a0-4514-b688-fbc942ead020","keyword":"CO2","originalKeyword":"CO2"}],"language":"zh","publisherId":"xyjsclygc200706041","title":"CO,O2,CH4,CO2对钯柱氢氘排代性能的影响","volume":"36","year":"2007"},{"abstractinfo":"CO2的温室气体效应已为全世界环保工作者所重视.CO2的矿物固定即碳酸化是减少其温室气体效应的有效方法之一.从矿物碳酸化的热力学、动力学方面分析了这种方法的可行性以及反应机制、速率影响因素等;总结了其工艺路线、生产成本以及产品的性能、用途等.指出用钢铁工业的废弃物——钢渣固定CO2具有很大的应用前景.","authors":[{"authorName":"唐海燕","id":"f627f340-bca0-4b57-bbae-d82d40e43d22","originalAuthorName":"唐海燕"},{"authorName":"孙绍恒","id":"ae81c09c-e398-4be3-883c-6f648c469e10","originalAuthorName":"孙绍恒"},{"authorName":"孟文佳","id":"69ba3693-29f7-4cec-86cd-2957663797fe","originalAuthorName":"孟文佳"},{"authorName":"刘辉","id":"b83c46df-4f51-44b7-bb4f-b7e925a0df72","originalAuthorName":"刘辉"},{"authorName":"王爽","id":"b0109fcc-caf9-493a-adf5-9f4a30ea93c8","originalAuthorName":"王爽"},{"authorName":"李京社","id":"8a782a27-e2ec-44eb-a3fe-047805869a64","originalAuthorName":"李京社"}],"doi":"","fpage":"2","id":"0234b8a7-3397-4c6d-bf5e-b53ea60fe43c","issue":"1","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"edd6ac91-468d-4972-ba30-ed51102c6508","keyword":"CO2","originalKeyword":"CO2"},{"id":"066159d6-f70a-4af9-a59b-d1b6e1a65081","keyword":"碳酸化","originalKeyword":"碳酸化"},{"id":"bedf8d62-a9ac-4114-aefc-7d21b5a344c5","keyword":"矿物","originalKeyword":"矿物"},{"id":"47f9b5b7-c2d4-48ab-b01f-4719f9ea1c37","keyword":"钢渣","originalKeyword":"钢渣"}],"language":"zh","publisherId":"zgyj201301001","title":"CO2矿物碳酸化的研究进展","volume":"23","year":"2013"},{"abstractinfo":"采用电位阶跃技术研究在H2S和CO2共存的近中性溶液中套管钢/溶液界面和反应过程.应用数学模型分析界面反应中氢吸附过程、负离子脱附过程和氢吸收过程的变化规律.当阶跃电位为50 mV,界面反应由氢吸附过程控制,当阶跃电位超过50 mV,界面反应由负离子脱附过程控制.研究显示,在含50% H2S(pH=5.9)环境中,加入CO2提高了界面负离子脱附、氢吸附和氢吸收反应速率.","authors":[{"authorName":"邓洪达","id":"7fa44dd8-2712-4789-8798-e04bb36a736f","originalAuthorName":"邓洪达"},{"authorName":"李春福","id":"14d14223-ec0a-4579-a158-fc4271ac9e8c","originalAuthorName":"李春福"},{"authorName":"曹献龙","id":"05e84d4d-ac01-410f-9d6d-a4c93e62c92e","originalAuthorName":"曹献龙"},{"authorName":"唐笑","id":"757f8d74-6d19-418a-9c03-855d98794b6d","originalAuthorName":"唐笑"}],"doi":"","fpage":"18","id":"80e25f79-1ab6-41bd-8bd9-87d672840225","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"ff9ae8c0-fc7c-42f2-bb9b-ad3b054fe70a","keyword":"套管钢","originalKeyword":"套管钢"},{"id":"5b8892e1-d8e0-4472-98b1-8d7ba3b7d6a7","keyword":"H2S","originalKeyword":"H2S"},{"id":"474579d2-7bd4-4b4b-b97a-6335acd894b2","keyword":"CO2","originalKeyword":"CO2"},{"id":"8388dc4b-93be-43b5-ab59-2b8d51a28262","keyword":"电位阶跃","originalKeyword":"电位阶跃"},{"id":"335bdc4e-383f-464e-81a6-149edcb06989","keyword":"脱附","originalKeyword":"脱附"},{"id":"42296780-5cc4-4d7c-88f3-1e35834eba63","keyword":"氢吸附","originalKeyword":"氢吸附"},{"id":"27c1dceb-3b34-46bc-820d-370c06571c9b","keyword":"氢吸收","originalKeyword":"氢吸收"}],"language":"zh","publisherId":"fsyfh201301005","title":"暂态技术研究高含H2S和CO2近中性溶液中套管钢的界面反应","volume":"34","year":"2013"},{"abstractinfo":"针对CO2强化采油的具体条件,对高CO2分压、高矿化度条件下CO2腐蚀的规律进行了探索,对缓蚀剂IMC-871-G在各种温度、压力条件下的使用效果进行了实验.在CO2强化采油矿场实验中综合运用了各种CO2防腐措施并取得了较好的效果.","authors":[{"authorName":"时维才","id":"c1a114d8-98bb-48fc-9af3-8c132c644ace","originalAuthorName":"时维才"},{"authorName":"钱家煌","id":"14699df0-3362-4dbd-9466-ea5ae1be1154","originalAuthorName":"钱家煌"},{"authorName":"王建华","id":"da5f294a-fc15-45b5-bc53-aaf48298ac7d","originalAuthorName":"王建华"},{"authorName":"杨怀玉","id":"ed0f61c9-58c3-418b-876e-112490f5dbeb","originalAuthorName":"杨怀玉"},{"authorName":"曹殿珍","id":"17ed4e03-8ad2-4a8f-931e-4acad9da1d72","originalAuthorName":"曹殿珍"},{"authorName":"陈家坚","id":"14728d50-3e6f-48b4-8291-ad5dfe7ec8dc","originalAuthorName":"陈家坚"},{"authorName":"祝英剑","id":"27c76074-f3d3-4771-916f-e24537617754","originalAuthorName":"祝英剑"}],"doi":"10.3969/j.issn.1002-6495.2003.05.012","fpage":"295","id":"13c22a2e-2a76-472c-9f28-7242e3237500","issue":"5","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"af08c511-dd63-481d-9cd5-58814400969c","keyword":"CO2","originalKeyword":"CO2"},{"id":"eb1b0cb1-ea54-4c8d-bd82-1f6f2934cbb4","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"dd985d6a-f4b1-4398-a38f-f9c5afc27ddb","keyword":"高分压","originalKeyword":"高分压"},{"id":"49744292-4bae-4338-9865-764606a2d125","keyword":"高矿化度","originalKeyword":"高矿化度"},{"id":"f51cf2a0-6ff4-486d-9679-1be14571d9a9","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"b1cb39d0-a944-4f90-84d1-ddbcb50b5824","keyword":"强化采油","originalKeyword":"强化采油"}],"language":"zh","publisherId":"fskxyfhjs200305012","title":"江苏油田注CO2强化采油的防腐工艺研究及应用","volume":"15","year":"2003"},{"abstractinfo":"局部腐蚀测试及评价一直是困扰腐蚀界的一大难题.针对CO2局部腐蚀的特征,研发了一种测量CO2局部腐蚀的测试仪.它能准确测定局部腐蚀的有关几何参数,定量评定局部腐蚀的破坏程度,并根据CO2局部腐蚀的特征,建立一种评定CO2局部腐蚀的方法.","authors":[{"authorName":"王萍","id":"f9fc1e38-dc40-4639-bec8-eda182049467","originalAuthorName":"王萍"},{"authorName":"李建平","id":"1e44cf78-6772-4de3-afd8-197e7d4ef99a","originalAuthorName":"李建平"},{"authorName":"马群","id":"1e4dc6d9-f0c2-4111-a88b-ea9a57051e13","originalAuthorName":"马群"}],"doi":"10.3969/j.issn.1001-1560.2007.03.021","fpage":"68","id":"a21afd9f-b623-42fd-a88a-9e286e91c416","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"e4aa7c3f-2b97-41ed-a86f-382738a90d19","keyword":"CO2","originalKeyword":"CO2"},{"id":"38dede38-2a7a-4e12-9a32-3ea22ffe665e","keyword":"局部腐蚀","originalKeyword":"局部腐蚀"},{"id":"f3b7c551-185d-4deb-a7d0-91a6106bbef4","keyword":"测试","originalKeyword":"测试"},{"id":"7f4e024d-d241-4834-98b7-5e08b1409665","keyword":"评价","originalKeyword":"评价"}],"language":"zh","publisherId":"clbh200703021","title":"CO2局部腐蚀测试及评价方法","volume":"40","year":"2007"},{"abstractinfo":"用第一性原理密度泛函理论研究了CO在Pt(111)、Pt(100)面上的吸附行为,并对吸附体系的吸附热、C-O键和C-Pt键的键长、布居数分析、电子态密度进行了研究.经比较吸附能、化学键参数和CO布居数,发现在CO主要以C朝下的方式吸附在Pt位,C原子与Pt原子间发生了强烈的杂化作用.为防止铂CO中毒,一般可采用在燃料气中充入一定量的氧气,这些氧气与CO反应生成CO2.计算表明,CO2不会在Pt(111)与(100)上面吸附,从而表明生成的CO2不会阻挡CO与Pt的作用,不会降低Pt的催化效应.","authors":[{"authorName":"陈艳平","id":"14029ff8-e95a-424d-bd7e-76fb2f9bee11","originalAuthorName":"陈艳平"},{"authorName":"秦宏伟","id":"3ace197a-f3b9-466a-8b65-1d37bb4a0a3a","originalAuthorName":"秦宏伟"},{"authorName":"李玲","id":"da50f8e9-6216-4037-87f6-a8f38e1f9a87","originalAuthorName":"李玲"},{"authorName":"胡季帆","id":"cf5e897f-f485-4d4d-bc7b-0605034b36fe","originalAuthorName":"胡季帆"}],"doi":"10.13228/j.boyuan.issn1005-8192.2015061","fpage":"1","id":"242a03f9-b93e-4976-afae-85be8400f018","issue":"5","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"a0871b1b-81b5-41a9-8974-153a306b3b1f","keyword":"第一性原理","originalKeyword":"第一性原理"},{"id":"3c75259b-f1a0-4fc1-aa1b-f10a4c872028","keyword":"CO","originalKeyword":"CO"},{"id":"9422d355-f288-42dd-a827-167a1245acd2","keyword":"CO2","originalKeyword":"CO2"},{"id":"8e593655-63b3-473b-8d18-968b5da1d177","keyword":"Pt","originalKeyword":"Pt"},{"id":"b298287b-d401-4922-8ace-e1c14b5cff44","keyword":"态密度","originalKeyword":"态密度"}],"language":"zh","publisherId":"jsgncl201505001","title":"CO与CO2在铂表面吸附模式或可能性研究","volume":"22","year":"2015"},{"abstractinfo":"阐述了吸附材料的吸附机理,重点介绍了低浓度CO2吸附材料的研究进展.在低浓度CO2吸附与控制方面,可再生化学吸附材料具有更大的优势和应用潜力.表面胺基丰富的大比表面积材料能耗低、吸附量大、选择性好,已逐渐成为低浓度CO2吸附材料的一个重要发展方向.","authors":[{"authorName":"岳晨午","id":"65854f7b-0b64-44bb-a5e3-cda5e80d72c6","originalAuthorName":"岳晨午"},{"authorName":"冯坚","id":"349ce0c8-a053-4613-a12c-1c1c67169050","originalAuthorName":"冯坚"},{"authorName":"姜勇刚","id":"1c4c57e6-ee22-4338-a70b-3b6dabe538ac","originalAuthorName":"姜勇刚"},{"authorName":"冯军宗","id":"007ece74-93c4-4ab4-96e0-98de40b4b35e","originalAuthorName":"冯军宗"}],"doi":"","fpage":"18","id":"422ac711-f999-4569-b4be-ffc16b9d014e","issue":"23","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"49a72cce-9b98-4037-ae7c-d785efe9070b","keyword":"CO2","originalKeyword":"CO2"},{"id":"4ff5525a-0852-4cf5-8128-34551ac7619e","keyword":"吸附材料","originalKeyword":"吸附材料"},{"id":"051a34d2-b052-4ba2-8c55-e1794852fde7","keyword":"吸附量","originalKeyword":"吸附量"}],"language":"zh","publisherId":"cldb201323004","title":"低浓度CO2吸附材料研究现状","volume":"27","year":"2013"},{"abstractinfo":"综述了近期国内外在CO2腐蚀产物膜方面的研究进展.其中重点阐述了钢在高温高压CO2环境中腐蚀产物膜的形成机理、主要影响因素、结构沉积过程,力学性能及电化学行为等,并讨论了有关CO2腐蚀产物膜方面的研究方向与内容.","authors":[{"authorName":"陈东","id":"df8a3109-407f-406d-887d-3b989da74aa7","originalAuthorName":"陈东"},{"authorName":"柳伟","id":"983cc919-84aa-4a38-a2f6-60822ca9bb14","originalAuthorName":"柳伟"},{"authorName":"路民旭","id":"e706b120-208f-4a92-bed3-fd4bf2d1d4ff","originalAuthorName":"路民旭"}],"doi":"10.3969/j.issn.1002-6495.2006.03.011","fpage":"192","id":"25e5f5ce-fdd7-469f-90d7-ef5436e1d02b","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"16d39d01-4a47-482b-b194-d5993d3607b6","keyword":"钢","originalKeyword":"钢"},{"id":"be6d4223-a29a-4c51-91eb-bf95e34b6540","keyword":"CO2","originalKeyword":"CO2"},{"id":"6b380af2-3d42-4843-becc-d15fdc08d317","keyword":"腐蚀产物膜","originalKeyword":"腐蚀产物膜"},{"id":"c2372a7f-b76c-4a2b-8b14-34178e3f0e87","keyword":"影响因素","originalKeyword":"影响因素"},{"id":"006131e4-53e5-43de-82c6-ace805466742","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"28d37dd9-2e22-42ea-bb0f-83340209735b","keyword":"电化学行为","originalKeyword":"电化学行为"}],"language":"zh","publisherId":"fskxyfhjs200603011","title":"钢的高温高压CO2腐蚀产物膜研究进展","volume":"18","year":"2006"}],"totalpage":8308,"totalrecord":83074}