{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在EDTA-柠檬酸联合络合法制备LSCF复合氧化物的过程中, 利用浓硝酸对LSCF的固态前驱体进行处理, 实现前驱体低温自燃烧反应. 以H2O2分解作为模型反应考察不同制备条件对催化性能的影响到响. 通过系统研究固态前驱体水溶液的pH值和固态前驱体的FT-IR结果, 对其分解过程进行了, 并解释了自燃发生的原因. 通过XRD考察了初级粉体经高温焙烧后产物的晶体结构. 研究结果表明: 硝酸处理可以抑制LSCF晶粒生长, 并且提高LSCF的双氧水催化性能, 其中LSCF-40-900的催化性能最好.
","authors":[{"authorName":"周嵬","id":"c283dcea-9015-48fb-a310-9d45e92befa6","originalAuthorName":"周嵬"},{"authorName":"薛小平","id":"b6de3505-30c0-4d99-91a6-a6515b0f6b4b","originalAuthorName":"薛小平"},{"authorName":"葛磊","id":"61006fe8-2b56-462c-8fe7-adbd39411169","originalAuthorName":"葛磊"},{"authorName":"郑尧","id":"99f38d2b-3099-46dc-9a68-e9ac67cbad9e","originalAuthorName":"郑尧"},{"authorName":"邵宗平","id":"8ddd3da7-34f3-4e98-bee1-0e44b9c1639c","originalAuthorName":"邵宗平"},{"authorName":"金万勤","id":"94a705b7-955c-4e5f-902d-2391a6386ec6","originalAuthorName":"金万勤"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2007.00657","fpage":"657","id":"36865739-01c4-410b-b59f-f14420cff282","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"d25325aa-c738-4b31-a01c-30e38afb4e4f","keyword":"钙钛矿型氧化物","originalKeyword":"钙钛矿型氧化物"},{"id":"bd03831d-0396-4655-abfa-14ca63726d3c","keyword":" La0.6Sr0.4Co0.2Fe0.8O3-δ","originalKeyword":" La0.6Sr0.4Co0.2Fe0.8O3-δ"},{"id":"33d37949-3ea0-46e7-bc8c-a7122fe53024","keyword":" HNO3 treatment","originalKeyword":" HNO3 treatment"},{"id":"ca40794f-b7e2-4665-9d6d-0b1abecbe749","keyword":" decomposition of peroxide hydrogen","originalKeyword":" decomposition of peroxide hydrogen"}],"language":"zh","publisherId":"1000-324X_2007_4_29","title":"硝酸处理对 EDTA-柠檬酸联合络合法制备La0.6Sr0.4Co0.2Fe0.8O3-δ 的影响","volume":"22","year":"2007"},{"abstractinfo":"多孔La0.6Sr0.4Co0.2Fe0.8O3-陶瓷具有一定的强度、良好的透气和电传导性能,可用于中温SOFC阴极支撑体和氧分离膜活性支撑体. 本文用固相反应法制备了多孔La0.6Sr0.4Co0.2Fe0.8O3-陶瓷. 考察了烧结条件、成型压力和有机添加剂量对孔隙率和孔径的影响. 研究发现气体渗透率随孔隙率线性增长,电导率随孔隙率的增大而下降,并满足关系式=0(1-P)3.1.","authors":[{"authorName":"刘卫","id":"97dec0a6-eff7-4d84-95de-ad4571bc688e","originalAuthorName":"刘卫"},{"authorName":"章占平","id":"83d8dab5-9268-4a5f-bd0c-854f3eb5549c","originalAuthorName":"章占平"},{"authorName":"夏长荣","id":"ef9784d1-f273-47df-8b97-03619d485a34","originalAuthorName":"夏长荣"},{"authorName":"谢津桥","id":"13fa3061-dff3-45c4-b1fb-1c9dc569a14e","originalAuthorName":"谢津桥"},{"authorName":"陈初升","id":"4054c3cc-4bfa-482a-8c0c-0a7dd9b0c947","originalAuthorName":"陈初升"}],"doi":"10.3321/j.issn:1000-324X.2000.05.014","fpage":"849","id":"d0371fd6-1f1e-41f7-bdbb-e67ebcf551f9","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"0c457931-0e05-4a32-b445-a58de4f22a20","keyword":"多孔陶瓷","originalKeyword":"多孔陶瓷"},{"id":"2746676f-7fd4-467c-a16f-3e3f6236374a","keyword":"混合导体","originalKeyword":"混合导体"},{"id":"de832adf-2705-4c09-848a-e4b20215003a","keyword":"透氧膜","originalKeyword":"透氧膜"},{"id":"5e0c22eb-e049-4921-8d63-ff8f888b2842","keyword":"燃料电池","originalKeyword":"燃料电池"}],"language":"zh","publisherId":"wjclxb200005014","title":"多孔 La0.6Sr0.4Co0.2Fe0.8O3-的制备及表征","volume":"15","year":"2000"},{"abstractinfo":"构建了氧电极材料分别为(La,Sr)MnO3/YSZ(LSM/YSZ)和La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)的固体氧化物电解池(SOEC).在750℃、电流密度为0.25A/cm2的SOEC模式下,分别对两种类型的SOEC进行了约110h的电解实验.结果表明,LSM/YSZ可能是较好的SOEC氧电极材料.依据电化学表现、XRD和微观结构,阐述了两种类型SOEC氧电极性能表现的可能机理.","authors":[{"authorName":"丁军锋","id":"34c43d26-d8f2-45dc-8d11-652011135ea7","originalAuthorName":"丁军锋"},{"authorName":"王蔚国","id":"18e9a6c0-1962-4f78-8e44-2dfb182efe17","originalAuthorName":"王蔚国"},{"authorName":"许赪\n","id":"d6d288ee-e01e-411b-84b4-3299422e86fc","originalAuthorName":"许赪\n"}],"doi":"","fpage":"20","id":"6ecf71b5-30b5-46ee-8625-96d9400390b9","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"bd4e406f-35b0-49c6-b188-679c6425fcf3","keyword":"SOEC","originalKeyword":"SOEC"},{"id":"bb599d79-c0c3-4d2c-8157-9565d3291ed0","keyword":"氧电极","originalKeyword":"氧电极"},{"id":"c52606b0-6a79-4552-a6b4-87c1df027d54","keyword":"LSM/YSZ","originalKeyword":"LSM/YSZ"},{"id":"0fcaf39d-f57f-453c-9274-360daf51f2aa","keyword":"LSCF","originalKeyword":"LSCF"}],"language":"zh","publisherId":"cldb201022006","title":"(La,Sr)MnO3/YSZ和La0.6Sr0.4Co0.2Fe0.8O3-δ氧电极SOEC性能的比较研究","volume":"24","year":"2010"},{"abstractinfo":"通过直流四端法研究了钙钛矿型混合导体La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)和La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.9Gd0.1O1.95(LSCF-GDC)复合材料的高温电学性质.通过电导率测试得出单相LSCF和LSCF-GDC的小极化子导电活化能分别为Ea1=9.72kJ/mol和E2=10.64kJ/mol.突然改变氧分压条件进行电导弛豫测试,进而研究了二者的氧表面交换性质.测定了温度范围在600~800℃、氧分压在21~34kPa之间变化时两种样品的表面交换系数为kchem为2.87×10-6~6.91×10-6 cm/s.讨论认为GDC对氧表面交换过程的催化作用与引入GDC对材料微结构的影响共同促进了复合材料中的氧输运过程.根据两种样品氧表面交换系数和温度的关系估算了氧表面交换过程活化能.","authors":[{"authorName":"王严东","id":"e60da864-31c6-4603-8f5f-b81cbfc95c41","originalAuthorName":"王严东"},{"authorName":"吕喆","id":"46b694aa-1ff9-49ac-9e66-70b1898a2316","originalAuthorName":"吕喆"},{"authorName":"魏波","id":"c5589f1d-c88b-4825-a4e5-bb36962cdf86","originalAuthorName":"魏波"}],"doi":"10.3724/SP.J.1077.2010.00635","fpage":"635","id":"e4a78d77-e8c3-4ef4-a658-bab770d9c50f","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"5bb0ac82-0333-4d4a-8633-e9e39b152166","keyword":"混合导体","originalKeyword":"混合导体"},{"id":"52f279ce-7256-4def-9745-f1885a86b1f2","keyword":"电导弛豫","originalKeyword":"电导弛豫"},{"id":"b1ce9474-5108-4f5f-a797-c452ad05651d","keyword":"活化能","originalKeyword":"活化能"},{"id":"8f58553d-ba42-4c22-ada0-37f8e8cc98ed","keyword":"表面交换系数","originalKeyword":"表面交换系数"}],"language":"zh","publisherId":"wjclxb201006015","title":"La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.9Gd0.1O1.95高温电导弛豫的研究","volume":"25","year":"2010"},{"abstractinfo":"复合钙钛矿氧化物La1-xSrxCo1-yFeyO3-δ是一种适于中温固体氧化物燃料电池的阴极材料. 采用柠檬酸螯合法合成了La0.6Sr0.4Co0.2Fe0.8O3-δ粉体, 并通过XRD和SEM, 研究了前驱体溶液pH值和煅烧温度对其粉体晶相结构的影响; 同时, 通过烧结体的SEM和交流阻抗分析, 详细讨论了前驱体溶液pH值和烧结温度对烧结体显微结构和阻抗特性的影响. 结果表明, 前驱体溶液pH=4、煅烧温度为900℃的粉体, 1400℃下烧结2h获得的烧结体, 具有最低的阻抗.","authors":[{"authorName":"苏丹","id":"c083453c-e086-485f-bbd2-0c9e3c72d523","originalAuthorName":"苏丹"},{"authorName":"朱满康","id":"89069652-eb3e-4c80-be9a-096ca4614646","originalAuthorName":"朱满康"},{"authorName":"侯育冬","id":"228024f8-da49-4a29-99e7-51568ba138c5","originalAuthorName":"侯育冬"},{"authorName":"汪浩","id":"96691390-ff2c-4486-bae3-8232eb4e4bac","originalAuthorName":"汪浩"},{"authorName":"严辉","id":"cf58fa7d-7aea-459d-81c3-bcd5f169b170","originalAuthorName":"严辉"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2008.00719","fpage":"719","id":"e08673f3-bf0c-41b6-8c86-9511440f1803","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"ab7306bf-32cf-40e7-b612-a10b3787c484","keyword":"La0.6Sr0.4Co0.2Fe0.8O3-δ","originalKeyword":"La0.6Sr0.4Co0.2Fe0.8O3-δ"},{"id":"5c1dfeb5-0286-44b9-870f-efeb77153d85","keyword":" citrate method","originalKeyword":" citrate method"},{"id":"ec65c837-14f4-4b93-aeb6-b86c5dff0dd0","keyword":" microstructure","originalKeyword":" microstructure"},{"id":"7ff8ab49-0635-4fae-ae1f-83f38d6d1ef0","keyword":" impedance analysis","originalKeyword":" impedance analysis"}],"language":"zh","publisherId":"1000-324X_2008_4_35","title":"固体燃料电池阴极材料La0.6Sr0.4Co0.2Fe0.8O3-δ的微观结构与阻抗特性研究","volume":"23","year":"2008"},{"abstractinfo":"复合钙钛矿氧化物La1-xSxCo1-yFeyO3-δ是一种适于中温固体氧化物燃料电池的阴极材料.采用柠檬酸螯合法合成了La0.6Sr0.4Co0.2Fe0.8O3-δ粉体,并通过XRD和SEM,研究了前驱体溶液pH值和煅烧温度对其粉体晶相结构的影响;同时,通过烧结体的SEM和交流阻抗分析,详细讨论了前驱体溶液pH值和烧结温度对烧结体显微结构和阻抗特性的影响.结果表明,前驱体溶液pH=4、煅烧温度为900°C的粉体,1400°C下烧结2h获得的烧结体,具有最低的阻抗.","authors":[{"authorName":"苏丹","id":"b63bdccb-9852-4302-9d45-3ae3a8de83f4","originalAuthorName":"苏丹"},{"authorName":"朱满康","id":"09463973-9a54-409b-8c39-fe1c8a902713","originalAuthorName":"朱满康"},{"authorName":"侯育冬","id":"66629918-7b64-4a77-9de7-85c82b00fb8f","originalAuthorName":"侯育冬"},{"authorName":"汪浩","id":"71ed73e5-921f-495c-bf4a-e3ab544feb1e","originalAuthorName":"汪浩"},{"authorName":"严辉","id":"432dcc8f-c8ff-493f-866f-ba9257dc678c","originalAuthorName":"严辉"}],"doi":"10.3321/j.issn:1000-324X.2008.04.017","fpage":"719","id":"0ebca330-c39c-44ea-af09-12aa1bce5397","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"822d6a71-4641-439d-a29e-d91c25259a33","keyword":"La0.6Sr0.4Co0.2Fe0.8O3-δ","originalKeyword":"La0.6Sr0.4Co0.2Fe0.8O3-δ"},{"id":"513a9021-e646-4f01-ace2-642a67253b6a","keyword":"柠檬酸法","originalKeyword":"柠檬酸法"},{"id":"1937370c-abc4-4655-8503-04019b67417c","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"f1cecb6c-7753-4d1f-b310-d9138bb67279","keyword":"阻抗特性","originalKeyword":"阻抗特性"}],"language":"zh","publisherId":"wjclxb200804017","title":"固体燃料电池阴极材料La0.6Sr0.4Co0.2Fe0.8O3-δ的微观结构与阻抗特性研究","volume":"23","year":"2008"},{"abstractinfo":"纳米TiO2修饰的La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极被直接应用于YSZ电解质电池上. TiO2可阻止LSCF和YSZ间的化学反应,抑制SrZrO3的形成. LSCF-0.25 wt% TiO2阴极电池在0.7 V和600°C下的电流密度是LSCF阴极电池的1.6倍.电化学阻抗谱结果表明, TiO2修饰显著加快了氧离子注入电解质的过程,这可能与TiO2抑制了阴极/电解质界面处高电阻SrZrO3层的形成有关.本文为在ZrO2基电解质上使用高性能的(La,Sr)(Co,Fe)O3阴极材料提供了一种简单有效的方法.","authors":[{"authorName":"刘伟星","id":"5ddb3224-7a3f-40c5-af29-3b443d660807","originalAuthorName":"刘伟星"},{"authorName":"赵哲","id":"f4519375-ab66-47dd-bda3-a8b3d68f1814","originalAuthorName":"赵哲"},{"authorName":"涂宝峰","id":"870d2bb1-4485-41a3-bca9-133cce28cc98","originalAuthorName":"涂宝峰"},{"authorName":"崔大安","id":"1f12931a-2c10-44ce-bc93-83797c9d757e","originalAuthorName":"崔大安"},{"authorName":"区定容","id":"afa4c306-a8fb-49f9-baf5-9b75d1e4c3de","originalAuthorName":"区定容"},{"authorName":"程谟杰","id":"97eb362b-199d-4a9a-8d74-4b136c41d2b9","originalAuthorName":"程谟杰"}],"doi":"10.1016/S1872-2067(14)60235-7","fpage":"502","id":"1daee5de-29bc-4536-a969-3cbc44769ad0","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"d7596663-4fb6-4a72-8f0c-590e0a44e04f","keyword":"中温固体氧化物燃料电池","originalKeyword":"中温固体氧化物燃料电池"},{"id":"2b61ff1c-0cf3-4ba8-b071-456419ca8bf3","keyword":"阴极","originalKeyword":"阴极"},{"id":"0975e93f-610d-4e26-8751-c539ae73521f","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"19c533d8-0183-4fff-b43b-6d6cdb8034d7","keyword":"界面反应","originalKeyword":"界面反应"},{"id":"8804e07c-7dc2-42aa-87cc-a56b994175a1","keyword":"氧化锆基电解质","originalKeyword":"氧化锆基电解质"}],"language":"zh","publisherId":"cuihuaxb201504008","title":"TiO2修饰La0.6Sr0.4Co0.2Fe0.8O3-δ用于中温固体氧化物燃料电池的阴极","volume":"","year":"2015"},{"abstractinfo":"采用丝网印刷工艺制备了带有SDC阻挡层的固体氧化物电解池La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)基复合阳极,利用动电位扫描及电化学阻抗谱分析考察了该材料在800℃时的电化学性能,电化学阻抗谱的研究表明,O2-在电极发生氧化反应生成O2的反应速率由电极/阻挡层界面的电荷转移、阻挡层/电解质界面的电荷转移以及氧气的解离吸附或在电极表面的扩散等三个电极过程控制.扫描电镜分析表明,经过长时间的电化学测试及升降温,阻挡层与电解质及复合电极部分均结合紧密,无缺陷.通过与传统的LSM-YSZ复合阳极的极化性能的对比,显示出LSCF材料在SOEC阳极领域良好的应用前景.","authors":[{"authorName":"孔江榕","id":"bcd10139-fe59-478a-9fcd-80d7817daaa9","originalAuthorName":"孔江榕"},{"authorName":"周涛","id":"23c016ed-bf40-48fb-b18c-30cf1ef16f8a","originalAuthorName":"周涛"},{"authorName":"刘鹏","id":"88d6bb06-096a-4c8d-bdae-5d0695a0e3dd","originalAuthorName":"刘鹏"},{"authorName":"张勇","id":"2ab03e17-3265-42dd-b600-314177aea2e4","originalAuthorName":"张勇"},{"authorName":"徐景明","id":"b31f900d-69a9-491c-a107-c5db804e3065","originalAuthorName":"徐景明"}],"doi":"10.3724/SP.J.1077.2011.01049","fpage":"1049","id":"71a370e3-80c8-43ff-80e4-bcf3952c6050","issue":"10","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"7fda3566-b6e7-4ab6-8936-7ccac033f432","keyword":"固体氧化物电解池","originalKeyword":"固体氧化物电解池"},{"id":"8b6be675-ff9f-434b-bbd4-9737dca0f76d","keyword":"复合阳极","originalKeyword":"复合阳极"},{"id":"d0962014-8bb9-4cdd-96e7-3f0c92fa3b88","keyword":"丝网印刷","originalKeyword":"丝网印刷"},{"id":"632ecb5d-5d98-420b-b98c-26188437d524","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"wjclxb201110007","title":"La0.6Sr0.4Co0.2Fe0.8O3-δ基固体氧化物电解池复合阳极的制备及性能","volume":"26","year":"2011"},{"abstractinfo":"在EDTA-柠檬酸联合络合法制备LSCF复合氧化物的过程中,利用浓硝酸对LSCF的固态前驱体进行处理,实现前驱体低温自燃烧反应.以H2O2分解作为模型反应考察不同制备条件对催化性能的影响.通过系统研究固态前驱体水溶液的pH值和固态前驱体的FT-IR结果,对其分解过程进行了分析,并解释了自燃发生的原因.通过XRD考察了初级粉体经高温焙烧后产物的晶体结构.研究结果表明:硝酸处理可以抑制LSCF晶粒生长,并且提高LSCF的双氧水催化性能,其中LSCF-40-900的催化性能最好.","authors":[{"authorName":"周嵬","id":"b37dea6e-6a2b-49cd-bae4-70eda903f81a","originalAuthorName":"周嵬"},{"authorName":"薛小平","id":"b6ba34a4-b17e-4d4c-95bf-c4243cec363b","originalAuthorName":"薛小平"},{"authorName":"葛磊","id":"50433eb1-1be1-4f14-9f47-372222d83182","originalAuthorName":"葛磊"},{"authorName":"郑尧","id":"f4b014ab-e962-4348-8aef-d3e30189c7c4","originalAuthorName":"郑尧"},{"authorName":"邵宗平","id":"66c2f1c8-285c-4970-9d1f-ba703d04cb8c","originalAuthorName":"邵宗平"},{"authorName":"金万勤","id":"8d45fc59-e01d-4f73-8ee1-67eb8c0462cc","originalAuthorName":"金万勤"}],"doi":"10.3321/j.issn:1000-324x.2007.04.017","fpage":"657","id":"eb898ca4-0db7-4090-9579-db02d42b5b9e","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"3ff5e808-c35b-4c88-8330-3876238a5289","keyword":"钙钛矿型氧化物","originalKeyword":"钙钛矿型氧化物"},{"id":"cbb2b8ef-c53c-4856-be07-dbb3d3a1f81c","keyword":"La0.6Sr0.4Co0.2Fe0.8O3-δ","originalKeyword":"La0.6Sr0.4Co0.2Fe0.8O3-δ"},{"id":"ca3835ba-341b-4b1f-86dd-b6c39c236e88","keyword":"硝酸处理","originalKeyword":"硝酸处理"},{"id":"a659baea-415b-47e0-ade8-b4547f2c9f95","keyword":"双氧水分解","originalKeyword":"双氧水分解"}],"language":"zh","publisherId":"wjclxb200704017","title":"硝酸处理对EDTA-柠檬酸联合络合法制备La0.6Sr0.4Co0.2Fe0.8O3-δ的影响","volume":"22","year":"2007"},{"abstractinfo":"采用柠檬酸/硝酸盐溶胶-凝胶法合成了La0.6Sr0.4Fe0.8Co0.2O3.XRD分析表明,所获粉体为单一相的钙钛矿结构;EDS分析证实,产物中各组成元素相对含量与原料配比一致;TEM观察显示,晶粒尺寸为100~200 nm.以La0.6Sr0.4Fe0.8Co0.2O3作为阴极材料,Ce0.8Gd0.2O1.9为电解质,NiO/Ce0.8GD0.2O1.9为阳极材料组成单片固体氧化物燃料电池,测试了其输出电性能.结果表明,在650 ℃工作温度,工作电压为0.5 V时,电流密度为0.45 A/cm2,输出功率密度为0.23 W/cm2.XRD分析表明,阴极La0.6Sr0.4Fe0.8Co0.2O3和电解质Ce0.8Gd0.2O1.9之间未发生固相反应.","authors":[{"authorName":"李朝辉","id":"59596978-97a0-4407-ab59-37dfd6458894","originalAuthorName":"李朝辉"},{"authorName":"李光玉","id":"096187ba-a02f-42cd-a556-e44b46a70d2a","originalAuthorName":"李光玉"},{"authorName":"高冬梅","id":"fd053450-ea87-41cc-a5d3-ed51061d8a55","originalAuthorName":"高冬梅"},{"authorName":"连建设","id":"5d90c8b0-f5f6-448a-8b41-ada216c94e95","originalAuthorName":"连建设"}],"doi":"10.3969/j.issn.1000-0518.2007.01.006","fpage":"25","id":"03eb750d-f063-4152-98d1-f117fc68b165","issue":"1","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"a7ac0b20-28d8-4c49-a17f-f9ce33ae1b69","keyword":"固体氧化物燃料电池","originalKeyword":"固体氧化物燃料电池"},{"id":"6813e0a7-e774-4559-8da3-cc98205469c3","keyword":"阴极材料","originalKeyword":"阴极材料"},{"id":"c4069338-95ae-4e0a-88e4-48fc46c804c6","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"}],"language":"zh","publisherId":"yyhx200701006","title":"中温燃料电池阴极材料La0.6Sr0.4Fe0.8Co0.2O3的合成与性能","volume":"24","year":"2007"}],"totalpage":8553,"totalrecord":85529}