夏罗生
,
朱树红
稀有金属
doi:10.13373/j.cnki.cjrm.2014.03.024
氢能具有清洁、高效及可再生利用的特点,是未来有发展前景的新型能源之一.开发出经济、高效及安全的储存技术是氢能大规模应用的关键,相对于高压气态储氢和液化储氢,通过氢与材料间的相互作用形成固溶体或配位氢化物的固态储氢技术因储氢容量高且安全性好,被认为是最有发展前景的储存方式.配位氢化物中的LiBH4的理论储氢容量高达18.5%(质量分数),远超车载氢源系统重量储氢容量大于5%的要求,是当前高容量储氢材料的典型代表及研究热点,但面临着严重的吸放氢热力学、动力学问题.从改善LiBH4的吸放氢性能出发,分析了储氢技术、储氢材料的研究进展,综述了近年来采取的主要措施,特别是添加适当反应物来形成复合储氢体系,掺杂阴阳离子以改变电负性,添加催化剂,减小品粒尺寸及采用纳米填充法等几个方面的研究成果和研究进展,重点关注其吸放氢机制、吸放氢容量、吸放氢温度及条件、吸放氢反应热力学及动力学等问题.高容量储氢材料LiBH4是车载氢源系统实用化的关键,在现有基础上研发出吸放氢迅速、吸放氢量大、吸放氢可逆、室温操作的方法及体系,是未来研究的重点.
关键词:
氢能
,
储氢材料
,
高容量
,
LiBH4
夏罗生
,
朱树红
稀有金属
doi:10.3969/j.issn.0258-7076.2013.04.004
随着燃料电池、燃料电池汽车的快速发展,LiBH4被认为是最具应用前景的储氢材料之一.然而,LiBH4吸放氢温度高以及吸放氢速率相对缓慢限制了其广泛应用.为改善LiBH4吸放氢性能,在LiBH4中添加少量Al,采用基于密度泛函理论的第一原理赝势平面波方法,计算了LiBH4合金化前后体系的氢化物形成热、H原子解离能,体系的晶体与电子结构.氢化物形成热、H原子解离能计算结果发现:Al合金化后体系相结构稳定性变差,体系解氢过程中所吸收的热量减少,H原子解离能减小,体系解氢能力增强.电子态密度(DOS)、电子密度和Mulliken电子占据数的结果表明:LiBH4结构稳定、解氢困难的电子结构原因是B-H之间较强的共价键,Al对LiBH4体系解氢性能增强主要是Al-LiBH4体系Fermi能级附近能隙值发生变化以及Li-BH,B-H间成键作用减弱.理论上揭示Al添加改善LiBH4体系解氢性能的微观机制,为LiBH4实际应用提供理论指导.
关键词:
赝势平面波
,
LiBH4
,
解氢能力
,
电子结构
夏罗生
,
朱树红
兵器材料科学与工程
采用FSW和MIG焊接方法对AZ31B变形镁合金进行焊接试验。结果表明:FSW接头的焊核区受摩擦热、机械搅拌和热塑流动的综合作用,形成粒度细小、晶界明显的等轴再结晶晶粒,平均直径约为5μm;MIG接头的焊缝区在电弧的高温热作用和急速冷却作用下,形成晶界明显的等轴晶,平均尺寸约为20μm;FSW焊接接头力学特性优于MIG,平均抗拉强度达到249.8 MPa,为母材抗拉强度的96.1%,平均伸长率为11.6%;两种接头的断裂面与拉伸方向的夹角约为45°, FSW接头断裂位置在热影响区,断面上有尺寸相差很大的韧窝,而MIG多出现在焊缝区,断面上有韧窝和撕裂棱。
关键词:
FSW
,
MIG
,
镁合金
,
力学特性
,
微观组织
,
断面形貌