蔡从中
,
温玉锋
,
裴军芳
,
朱星键
,
王桂莲
稀有金属材料与工程
根据自蔓延高温合成法(SHS)制备多孔NiTi合金孔隙试验所获得的实测数据集,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)方法,建立不同反应参数(温度,粒度和压坯密度)下合成的多孔NiTi合金孔隙的SVR预测模型,并与基于误差反向传播神经网络(BPNN)回归模型的预测结果进行比较.结果表明:在相同的训练与测试样本集下所获的SVR预测结果的平均绝对百分误差(MAPE)比BPNN预测模型的要小,其预测精度更高,预测效果更好;SVR-LOOCV预测的MAPE也比BPNN略小,且其预测结果的相关系数达到了0.999.因此,该方法是一种预测SHS法制备多孔NiTi合金孔隙的有效方法,可为SHS合成多孔NiTi提供理论指导.
关键词:
NiTi合金
,
自蔓延高温合成(SHS)
,
孔隙
,
支持向量回归(SVR)
,
预测
温玉锋
,
蔡从中
,
裴军芳
,
朱星键
,
肖婷婷
功能材料
不同配方的玻璃一般具有不同的热膨胀系数.根据R2O-MO-Al2O3-SiO2(R为碱金属元素,M为碱土金属元素)系统玻璃在不同氧化物组成(SiO2,MgO,CaO,SrO,BaO,Na2O和K2O)下的热膨胀系数实测数据集,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)方法,建立了玻璃的不同配方与其热膨胀系数关系的SVR预测模型,并与基于BPNN神经网络模型的预测结果进行了比较.结果表明:对于相同的训练样本和检验样本,支持向量回归的玻璃的热膨胀系数模型始终比BPNN模型具有更高的预测精度;增加训练样本数有助于提高所建SVR预测模型的泛化能力;基于留一交叉验证法(LOOCV)的SVR预测的均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分误差(MAPE)均为最小.本研究表明:SVR是一种预测不同配方玻璃的热膨胀系数的有效方法.
关键词:
玻璃
,
热膨胀系数
,
支持向量机
,
粒子群算法
,
留一交叉验证法
,
回归分析
,
预测