景琳琳
,
袁守谦
,
李都宏
物理测试
将偏最小二乘法与BP人工神经网络结合,建立了一种新的预测模型:PLS-BP神经网络模型。模型应用偏最小二乘法来提取主成分R及得分T,根据交叉有效性检验和留N法来确定PLS的成分个数,PLS-BP网络的输入数目和网络隐含层的节点数目,最终确定网络的结构为6-11-1。应用该模型可以有效地避免几个因素之间的多重相关性问题,同时也能更好地解决非线性问题,克服了偏最小二乘和单纯BP网络的缺点。在钢筋屈服强度的预测中表明,应用PLS-BP模型预测的误差均小于1.03%,比应用于偏最小二乘回归模型的误差6.19%要小得多,并且预测值和实际值比较吻合。
关键词:
偏最小二乘法
,
BP神经网络
,
屈服强度