{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"选用四种溶液与不同含量的氮化硅粉体混合得到不同的悬浊液,在石英坩埚内壁制备了氮化硅涂层,并将其用于冶金法提纯多晶硅;用扫描电镜、电子探针等分析了多晶硅铸锭与坩埚内壁的粘连面积、铸锭表面微裂纹形貌和反应层厚度,得到与最佳多晶硅铸锭脱模相对应的制备涂层的工艺参数,同时分析了熔炼过程中氮化硅涂层与硅熔体间的反应机制。结果表明:将含质量分数为8%聚乙烯吡咯烷酮的乙醇溶液和质量分数为60%氮化硅的悬浊液喷涂到坩埚内壁上,并经210℃×15min烧结后的氮化硅涂层不易分解,坩埚内壁保持完整,铸锭的脱模效果最好;随熔炼温度升高氮化硅涂层分解加剧,在涂层与硅铸锭的接触面处形成了由大颗粒氮化硅组成的连续层,减小了坩埚和涂层中杂质向硅铸锭内部扩散的可能性。","authors":[{"authorName":"刘美","id":"21c6b76f-10dc-43f3-9235-e0cb32984e62","originalAuthorName":"刘美"},{"authorName":"谭毅","id":"6ed7eadf-b547-455c-b74c-bf053fd44755","originalAuthorName":"谭毅"},{"authorName":"许富民","id":"28f1f455-3ede-4e9f-a4e1-110a1916b683","originalAuthorName":"许富民"},{"authorName":"李佳艳","id":"0a39e630-ba0a-4206-8e6d-1f57958812d6","originalAuthorName":"李佳艳"},{"authorName":"闻立时","id":"a46075a8-566b-48d2-ab59-8f719a2f528c","originalAuthorName":"闻立时"},{"authorName":"张磊","id":"ce59f23d-3437-4d32-a56c-55d4b3a69351","originalAuthorName":"张磊"}],"doi":"","fpage":"8","id":"80a93e6c-d5ac-418f-8757-3fe7d9e76b2b","issue":"6","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"f2ed7eb8-4011-4145-91e1-83d67a9d1b9b","keyword":"太阳能电池","originalKeyword":"太阳能电池"},{"id":"18e8dde9-48c8-49e7-8b7f-c695c1f202b5","keyword":"多晶硅","originalKeyword":"多晶硅"},{"id":"783612b1-cba8-4ee7-a93f-2f797f5f2903","keyword":"氮化硅涂层","originalKeyword":"氮化硅涂层"},{"id":"083e4eea-8fa1-4b95-98c4-62f35ab85989","keyword":"坩埚","originalKeyword":"坩埚"}],"language":"zh","publisherId":"jxgccl201106003","title":"冶金提纯多晶硅用坩埚内壁氮化硅涂层的制备","volume":"35","year":"2011"},{"abstractinfo":"以甲硅烷(20%甲硅烷+80%氢气)和氨气作为反应前驱体,选择孔隙率为20%左右的多孔石英陶瓷基体,采用CVD法在多孔石英基体表面制备了氮化硅涂层.研究了沉积反应温度、反应压力、反应气体配比以及沉积时间等工艺参数对附着力的影响,确定了CVD法制备氮化硅涂层的最佳工艺参数,通过对所得涂层及复合材料进行抗弯强度和介电性能的表征,探讨了氮化硅涂层对多孔石英基体力学性能和介电性能的影响.","authors":[{"authorName":"李家亮","id":"51594bbf-f7ce-4b2e-be8c-457ab58164bb","originalAuthorName":"李家亮"},{"authorName":"牛金叶","id":"ed666667-ba1d-4c6f-b585-d2747fb594c0","originalAuthorName":"牛金叶"}],"doi":"","fpage":"1197","id":"49223d54-a890-491e-aa76-7ef9e2455f0e","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"76f57a29-65e0-4702-8e06-fd6914dfc077","keyword":"CVD","originalKeyword":"CVD"},{"id":"344c1e19-8e98-431f-8c61-95785177e45e","keyword":"多孔石英陶瓷","originalKeyword":"多孔石英陶瓷"},{"id":"35c4c9a5-e9f1-4e86-8e88-b31af9ab2f9f","keyword":"氮化硅涂层","originalKeyword":"氮化硅涂层"}],"language":"zh","publisherId":"gsytb201105045","title":"多孔石英基体上CVD法沉积氮化硅涂层的工艺、结构与性能研究","volume":"30","year":"2011"},{"abstractinfo":"采用HSiCl3-NH3-N2(稀释气体)体系在石英陶瓷基板上通过低压化学气相沉积(LPCVD)法沉积出了Si3N4涂层,研究了工艺条件对涂层沉积速率的影响.结果表明,在没有稀释气体的情况下,随着沉积温度升高,Si3N4涂层的沉积速率逐渐增加,在850℃附近达到最大值,随着反应温度的进一步升高,涂层沉积速率下降.当存在稀释气体时,在所选温度范围内随着沉积温度的升高,Si3N4涂层的沉积速率一直增大,反应的表观活化能约为222KJ/mol.随着原料中NH3/HSiCl3流量比值的增大,Si3 N4涂层的沉积速率逐渐增加,随后稳定,但稍有下降趋势.在所选稀释气体流量范围内,Si3N4涂层的沉积速率随着稀释气体流量的增加而增大.","authors":[{"authorName":"尹立峰","id":"8c7598eb-cb8e-465f-a3a9-952854ffd391","originalAuthorName":"尹立峰"},{"authorName":"王思青","id":"ebc3896a-95de-4f40-875d-c9a78366f135","originalAuthorName":"王思青"},{"authorName":"张长瑞","id":"77f939c6-55b6-49d6-8f05-882ab141e34c","originalAuthorName":"张长瑞"},{"authorName":"崔岩","id":"f388a8fc-78dd-4768-ae3c-979f8bbe1e5a","originalAuthorName":"崔岩"},{"authorName":"徐晓燕","id":"03b6e5a6-eb60-4f57-b2a2-b70de6494431","originalAuthorName":"徐晓燕"}],"doi":"","fpage":"415","id":"ca20b9b0-5ac7-47a3-89c9-c1f25b559344","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a9d807c5-2d6b-4f21-9c18-4d84493beb68","keyword":"LPCVD","originalKeyword":"LPCVD"},{"id":"cc155729-8b2f-4b44-bfab-1ce1606c7102","keyword":"氮化硅涂层","originalKeyword":"氮化硅涂层"},{"id":"7a179bc0-63bc-4ea9-9ef7-f088f13cf282","keyword":"沉积速率","originalKeyword":"沉积速率"}],"language":"zh","publisherId":"cldb2008z1126","title":"制备工艺对CVD Si3N4涂层沉积速率的影响","volume":"22","year":"2008"},{"abstractinfo":"当今多晶硅已成为最主要的光伏材料,利用定向凝固工艺生产铸造多晶硅铸锭已成为业界广为采用的方法,但目前利用定向凝固工艺生产出来的多晶硅铸锭仍存在较多的缺陷,例如材料利用率低以及组织不均匀等问题.为了进一步优化铸造工艺,采用自行设计的真空电磁感应熔炼炉及定向凝固炉进行了多晶硅定向凝固实验.重点对比研究了石英坩埚和石英陶瓷坩埚对铸锭质量的影响.研究表明相对于石英坩埚而言,具有涂层的石英陶瓷坩埚不但可以防止铸锭产生裂纹,而且铸造出的多晶硅铸锭具有表面质量好以及相对发达粗大的柱状晶组织,平均晶粒尺寸为3~4mm.同时氯化硅涂层可以有效地降低铸锭中杂质氧的含量.","authors":[{"authorName":"罗大伟","id":"bd65b3c7-06f8-495c-a996-23d92b0d2643","originalAuthorName":"罗大伟"},{"authorName":"孙金玲","id":"1796c87a-d954-4d3b-9c33-54bd5de60b17","originalAuthorName":"孙金玲"},{"authorName":"张爽","id":"16c48c95-0934-416f-849e-6385ab2978d5","originalAuthorName":"张爽"},{"authorName":"张国良","id":"34d9d9e1-5f20-479d-999a-cee2f1554020","originalAuthorName":"张国良"},{"authorName":"李廷举","id":"f7b68965-35c4-4da9-8fdb-f4a6fe4315c7","originalAuthorName":"李廷举"}],"doi":"","fpage":"674","id":"2557ed8c-75d1-45d2-a3f1-9c4a82f8af68","issue":"z4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"fc397d21-22e9-424f-8e1b-faa336a00b7d","keyword":"铸造多晶硅","originalKeyword":"铸造多晶硅"},{"id":"6b57f402-15eb-48e5-ae9e-3251f015d572","keyword":"石英陶瓷坩埚","originalKeyword":"石英陶瓷坩埚"},{"id":"3e7e1f7b-9446-48a9-90f4-2d907f7d6ab3","keyword":"氮化硅涂层","originalKeyword":"氮化硅涂层"}],"language":"zh","publisherId":"gncl2011z4024","title":"铸造多晶硅的制备与研究","volume":"42","year":"2011"},{"abstractinfo":"以CaO-SiO 2-B2O 3体系作为α-Si 3 N4 的结合剂和助烧剂, 采用溶胶-凝胶法在多孔氮化硅表面制备了防潮增强涂层. 采用X射线衍射(XRD)方法对涂层进行了相结构分析; 用扫描电子显微镜(SEM)观察了涂层的微观形貌; 用阿基米德法测量了封孔前后基体的密度、吸水率和显气孔率; 分别在SANS电子式材料实验机和1MHz LCR测试仪上测量了封孔前后材料的抗弯强度、介电常数和介电损耗. 结果表明: 封孔防潮处理使基体吸水率下降了90.99%~96.97%, 强度提高了9%~22%, 而对多孔体的密度、介电常数和介电损耗影响很小.
","authors":[{"authorName":"王树彬","id":"3b99c174-a864-47a3-a29a-58c837fcb034","originalAuthorName":"王树彬"},{"authorName":"李世杰","id":"4c16e468-2075-4b63-8a64-bdf1111178ba","originalAuthorName":"李世杰"},{"authorName":"张跃","id":"7786042c-1bca-4606-8517-ab41d6fc4489","originalAuthorName":"张跃"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2008.00769","fpage":"769","id":"6ae76981-f46f-4413-919a-00f1f08c36ab","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"a7d137c5-e0cc-4e35-bc10-a94d93a40435","keyword":"氮化硅","originalKeyword":"氮化硅"},{"id":"ea1f0afd-c5e8-4fa0-b406-973d917f7c01","keyword":" porous materials","originalKeyword":" porous materials"},{"id":"e2c50ff6-37a2-4db7-9f87-2cdf1f954c35","keyword":" sealing","originalKeyword":" sealing"},{"id":"b2b51645-68a9-41dc-b97b-b1923263c6a4","keyword":" damp-proof","originalKeyword":" damp-proof"}],"language":"zh","publisherId":"1000-324X_2008_4_17","title":"多孔氮化硅表面封孔增强涂层研究","volume":"23","year":"2008"},{"abstractinfo":"以CaO-SiO2-B2O3体系作为α-Si3N4的结合剂和助烧剂,采用溶胶-凝胶法在多孔氮化硅表面制备了防潮增强涂层.采用X射线衍射(XRD)方法对涂层进行了相结构分析;用扫描电子显微镜(SEM)观察了涂层的微观形貌;用阿基米德法测量了封孔前后基体的密度、吸水率和显气孔率;分别在SANS电子式材料实验机和1MHz LCR测试仪上测量了封孔前后材料的抗弯强度、介电常数和介电损耗.结果表明:封孔防潮处理使基体吸水率下降了90.99%~96.97%,强度提高了9%~22%,而对多孔体的密度、介电常数和介电损耗影响很小.","authors":[{"authorName":"王树彬","id":"e61bd70f-8b52-4ac5-8b17-2370a4166302","originalAuthorName":"王树彬"},{"authorName":"李世杰","id":"98ef16b4-48e1-4505-ace1-f783c7bed1b6","originalAuthorName":"李世杰"},{"authorName":"张跃","id":"b5519e4c-f365-4990-a08b-140f4c4ec3f8","originalAuthorName":"张跃"}],"doi":"10.3321/j.issn:1000-324X.2008.04.027","fpage":"769","id":"66d03df7-21f3-4aa6-bfac-b11e9a18d331","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"42e6195e-b5e2-4a05-9912-7a839090bd6e","keyword":"氮化硅","originalKeyword":"氮化硅"},{"id":"f8214cad-b95f-491e-acd0-15e9917bdada","keyword":"多孔陶瓷","originalKeyword":"多孔陶瓷"},{"id":"c8acd208-d57c-4955-bb07-d048894ba940","keyword":"封孔","originalKeyword":"封孔"},{"id":"88d07dd0-8f52-4f66-8e11-c8aaf02e67b2","keyword":"防潮涂层","originalKeyword":"防潮涂层"}],"language":"zh","publisherId":"wjclxb200804027","title":"多孔氮化硅表面封孔增强涂层研究","volume":"23","year":"2008"},{"abstractinfo":"采用反应磁控溅射技术在取向硅钢片表面制备了氮化硅(Si3N4)张力涂层.通过实验研究反应磁控溅射时间、高温退火温度和实验气氛对硅钢铁损以及涂层附着性的影响.研究表明,反应磁控溅射技术在硅钢表面溅射氮化硅张力涂层可有效的降低硅钢的铁损,且各种工艺条件对硅钢的铁损和涂层的附着性影响很大.在氮气和氩气气氛中,经过5min反应磁控溅射氮化硅,然后在氢气和氮气的气氛中,820℃下进行高温退火时,取向硅钢的铁损可降低18%.","authors":[{"authorName":"刘新彬","id":"7feffe4c-9819-4d54-a00e-faf247cf3c23","originalAuthorName":"刘新彬"},{"authorName":"孔祥华","id":"0e19941a-b141-437d-82ea-49ac297c2ba3","originalAuthorName":"孔祥华"},{"authorName":"何业东","id":"fb1ee7a1-f770-4b71-974d-dd9f7438e6a4","originalAuthorName":"何业东"},{"authorName":"张鲲","id":"7ca731e3-f29f-464d-b5e5-297a8edbc345","originalAuthorName":"张鲲"},{"authorName":"王向欣","id":"c0bf4d01-7cf0-48dc-9ec8-b7be412880ad","originalAuthorName":"王向欣"},{"authorName":"胡守天","id":"8a5947fd-85fb-4a86-be36-5b11616ceebc","originalAuthorName":"胡守天"},{"authorName":"杨浩","id":"c5b87812-80e8-4946-898b-a6986dd4eeeb","originalAuthorName":"杨浩"}],"doi":"10.3969/j.issn.1009-6264.2007.06.029","fpage":"128","id":"fccd10a9-eb58-4212-a29d-dcb6527b98c3","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"3e721c7e-8bb3-4bdf-9137-88a05d7f284b","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"59e6ab66-58b0-4d32-b30e-a1a161d907d4","keyword":"氮化硅","originalKeyword":"氮化硅"},{"id":"fc140fdb-1ea6-42bf-b47a-e0e9df2c9d91","keyword":"取向硅钢","originalKeyword":"取向硅钢"},{"id":"82c09052-2c10-42fb-9336-ed7a71902ac8","keyword":"铁损","originalKeyword":"铁损"}],"language":"zh","publisherId":"jsrclxb200706029","title":"氮化硅张力涂层对取向硅钢性能的影响","volume":"28","year":"2007"},{"abstractinfo":"用高能量密度脉冲等离子体于室温下在氮化硅陶瓷刀具上成功沉积了高硬耐磨的氮化涂层.薄膜厚度用光学显微镜和俄歇电子能谱仪测定,薄膜元素和相组成与分布分别用俄歇电子能谱仪、X光电子能谱以及X光衍射仪测定,薄膜微观结构用扫描电镜观察,薄膜表面粗糙度用光学显微镜测定,薄膜力学性能由纳米压痕实验和纳米划痕实验确定,薄膜的磨损性能用工业条件下的切削实验评价.实验结果表明,在最优化条件下,涂层与基体的结合力很好,纳米划痕实验临界载荷达80 mN以上;氮化涂层具有很高的硬度和杨氏模量,分别达28 GPa和350 GPa以上.涂层刀具用于HB达2 200MPa~2 300 MPa的HT250钢切削实验表明,刀具耐磨损能力增强,寿命明显提高.","authors":[{"authorName":"彭志坚","id":"2562b4a5-0cfc-4421-a0c3-931e0340a807","originalAuthorName":"彭志坚"},{"authorName":"苗赫濯","id":"e2da143a-d180-4c27-b17c-cde23f6836c5","originalAuthorName":"苗赫濯"},{"authorName":"齐龙浩","id":"b57e1295-cfbc-4587-b6b2-7b940e36a654","originalAuthorName":"齐龙浩"},{"authorName":"龚江宏","id":"f5ae5e4f-749e-4f56-a4d1-da2c7aa3c5ad","originalAuthorName":"龚江宏"},{"authorName":"杨思泽","id":"9cd9c69f-d0a0-45ba-be55-162f060c7395","originalAuthorName":"杨思泽"},{"authorName":"刘赤子","id":"7e93d6b5-966f-4734-9aab-e80ee993311d","originalAuthorName":"刘赤子"}],"doi":"","fpage":"507","id":"4298111d-e5a3-4e08-ae66-9779ce711796","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"bf914950-485b-4108-8a16-befc73616ec8","keyword":"高能量密度脉冲等离子","originalKeyword":"高能量密度脉冲等离子"},{"id":"198dfb6f-9f52-491c-a0c2-af2439a79c65","keyword":"TiN涂层","originalKeyword":"TiN涂层"},{"id":"c98f7070-a01f-4055-b31a-4559fa72fa08","keyword":"氮化硅陶瓷","originalKeyword":"氮化硅陶瓷"},{"id":"3f1d7050-1ac3-424d-a4dd-1f03da0927a5","keyword":"刀具","originalKeyword":"刀具"}],"language":"zh","publisherId":"xyjsclygc200405014","title":"氮化硅陶瓷刀具表面涂覆高硬耐磨氮化涂层研究","volume":"33","year":"2004"},{"abstractinfo":"采用溶胶-凝胶法在多孔氮化硅表面制备了CaO-B2O3-SiO2(简称为CBS)微晶玻璃致密涂层.用高Q腔一腔多模扫频方法测量了样品从7.3GHz至18.4GHz频率范围内室温到1200℃的介电常数和介电损耗,研究了CBS涂层对多孔氮化硅高温高频介电性能的影响.结果表明:多孔氮化硅经表面处理后的介电常数略有增大,随着频率增大介电损耗的波动减小;9.2GHz典型频率下,样品介电常数的温度系数增大;室温下介电损耗降低了60%以上;表面处理改善了介电损耗的温度稳定性,满足高温宽频天线罩透波性能要求.","authors":[{"authorName":"孙雨薇","id":"7efd4c83-057e-46af-bf90-2447276621fe","originalAuthorName":"孙雨薇"},{"authorName":"王树彬","id":"2c89b94c-50f2-47f7-aa3d-15b59bb1199d","originalAuthorName":"王树彬"},{"authorName":"张健","id":"30540781-5bdc-40f6-9ee0-32786e611f9d","originalAuthorName":"张健"}],"doi":"10.3969/j.issn.1001-4381.2011.02.009","fpage":"42","id":"5132dfad-a131-4e8a-bd17-b013f7b3696b","issue":"2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"aef37b8f-ad4a-4cb7-982a-7c8de32925c0","keyword":"CaO-B2O3-SiO2涂层","originalKeyword":"CaO-B2O3-SiO2涂层"},{"id":"1d240537-a135-400d-80fa-4aee22935b1c","keyword":"氮化硅","originalKeyword":"氮化硅"},{"id":"51ca944f-e46c-4743-8a72-337e261ec5b7","keyword":"多孔陶瓷","originalKeyword":"多孔陶瓷"},{"id":"7ee979a7-32ce-4904-bd5e-447c55941f33","keyword":"高频介电性能","originalKeyword":"高频介电性能"}],"language":"zh","publisherId":"clgc201102009","title":"CBS涂层对多孔氮化硅高温高频介电性能的影响","volume":"","year":"2011"},{"abstractinfo":"研究了氮化硅的氧化机制以及被动氧化至主动氧化的转捩温度,并结合试验结果做了分析.结果表明氮化硅在高温下极易炸裂,在被动氧化机制下生成氮气和SiO_2薄膜,转捩温度和碳化硅材料基本一致.","authors":[{"authorName":"陈思员","id":"5338b9e7-3728-45ad-8aa8-2212752d14eb","originalAuthorName":"陈思员"},{"authorName":"姜贵庆","id":"607c5dcf-c06a-4aa3-a44c-05866a3a1023","originalAuthorName":"姜贵庆"},{"authorName":"俞继军","id":"ffca4ef6-e9ed-4c9d-b6b9-edbaef58114b","originalAuthorName":"俞继军"},{"authorName":"欧东斌","id":"3be5fb3f-f13b-47eb-850a-93081fa8243c","originalAuthorName":"欧东斌"}],"doi":"10.3969/j.issn.1007-2330.2010.01.007","fpage":"28","id":"b51cac94-e65d-4bb4-b9cd-ac2378acf0ca","issue":"1","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"1dfb60b4-e283-4cea-881a-c70a144fa9ad","keyword":"抗氧化","originalKeyword":"抗氧化"},{"id":"4b887aca-d18a-452b-b339-a4713f1aaf6b","keyword":"氮化硅","originalKeyword":"氮化硅"},{"id":"e78bbc85-d2a9-4fb7-8a20-dda5986ba4a5","keyword":"转捩温度","originalKeyword":"转捩温度"}],"language":"zh","publisherId":"yhclgy201001007","title":"氮化硅的氧化机制研究","volume":"40","year":"2010"}],"totalpage":1382,"totalrecord":13814}