赵军
,
闫志刚
,
陈久川
,
文全兴
,
杨永明
,
孙欢迎
,
刘翊安
,
李红波
,
孙艳荣
材料热处理学报
在3 GPa压力作用下对Cu54.27Cr45.73合金进行不同工艺的时效处理,通过硬度、压缩屈服强度和电导率测试及显微组织观察,探讨了高压时效处理对合金力学性能及电导率的影响.结果表明:高压时效处理能改善合金的力学性能及电导率,该合金经960℃×1 h(固溶)+在3 GPa压力下480℃×1 h的时效处理后可获得较高的力学性能和电导率,其硬度、压缩屈服强度和电导率分别为181HV、249 MPa和17.86 MS/m,与相同时效温度和时效时间的常压时效处理合金相比,合金的硬度、压缩屈服强度和电导率分别提高17.53%、5.06%和4.94%.
关键词:
Cu54.27Cr45.73合金
,
高压时效处理
,
力学性能
,
电导率
赵军
,
李冀蒙
,
赵陆民
,
尹硕
,
陈久川
,
文全兴
稀有金属
doi:10.13373/j.cnki.cjrm.2015.02.001
采用热常数测试仪和电导仪测试了 Cu-37.67Zn-1.43Al合金经1~5 GPa,700℃保温20 min处理前后的热导率和电导率,用光学显微镜和透射电镜对其组织特征进行观察,并探讨了高压热处理对Cu-37.67Zn-1.43Al合金导热性能和导电性能的影响.结果表明:退火态Cu-37.67Zn-1.43Al合金的原始组织由α相和少量的β相组成.经高压热处理后,合金组织中白色块状α相数量减少,出现细条状α相,组织明显细化,细化效果随压力的增大先增强后减弱,当压力为3 GPa时,组织细化效果最好.并且,高压热处理能降低Cu-37.67Zn-1.43Al合金的热导率和电导率,在1~5 GPa范围内,随着压力的增大,该合金的热导率和电导率均先降低后升高;压力为3 GPa时,热导率和电导率均达到最低值,分别为99 W·m-1·K-1和20.86% IACS,较高压处理前分别降低了14.66%和15.07%,但经高压处理与未经高压处理的样品热导率差值随着温度的升高而逐渐减小,在25℃时,两者的差值为17 W·m-1·K-1,而在400℃时,两者的差值为4 W·m-1·K-1.其原因主要是高压热处理后Cu-37.67Zn-1.43Al合金组织细化及组织内位错密度增大.
关键词:
Cu-37.67Zn-1.43Al合金
,
高压热处理
,
热导率
,
电导率
赵军
,
尹硕
,
陈久川
,
王智
,
文全兴
,
杨永明
稀有金属
doi:10.3969/j.issn.0258-7076.2013.05.023
采用热常数测试仪和膨胀仪测试了经高压处理前后Cu-50.84Cr-0.48Al合金的热扩散系数和热膨胀系数,并借助金相显微镜、扫描电镜(SEM)和透射电镜(TEM)对经高压处理前后Cu-50.84Cr-0.48Al合金的组织进行观察.在此基础上,探讨了高压处理对Cu-50.84Cr-0.48Al合金热扩散系数和热膨胀系数的影响.结果表明:高压处理能增大Cu-50.84Cr-0.48Al合金的热扩散系数,当压力为1 GPa,该合金的热扩散系数为0.4188 cm2.s-1,较高压处理前的提高了10.65%,压力超过1 GPa时,合金的热扩散系数随压力的增大变化不明显.对热膨胀系数来说,当温度低于96℃时,1 GPa压力处理对合金的热膨胀系数影响不大,温度高于96℃时,1 GPa压力处理能增大合金的热膨胀系数.Cu-50.84Cr-0.48Al合金经高压处理后致密性的升高是导致该合金的热扩散系数及热膨胀系数增大的主要原因.
关键词:
Cu-50.84Cr-0.48Al合金
,
高压处理
,
热扩散系数
,
热膨胀系数