{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用冲击弯曲试验研究了硬质合金的冲击疲劳性能.结果表明,当晶粒度一定时,硬质合金的冲击疲劳性能随着钴含量的增加而提高;当钴含量一定,WC晶粒度为1.2~3.2μm时,WC-Co硬质合金的冲击疲劳性能先是随着WC晶粒度的增粗而提高,当晶粒度增加到一定程度时,冲击疲劳性能出现下降.超细晶粒硬质合金的冲击疲劳性能明显高于一般WC-Co硬质合金.","authors":[{"authorName":"欧朝霞","id":"c29e816a-7494-4285-aeb8-1a3b0dbcd270","originalAuthorName":"欧朝霞"}],"doi":"10.3969/j.issn.1003-7292.2008.01.008","fpage":"37","id":"0d2b7b03-c23d-4e2b-b27b-bc91ddccf38c","issue":"1","journal":{"abbrevTitle":"YZHJ","coverImgSrc":"journal/img/cover/YZHJ.jpg","id":"75","issnPpub":"1003-7292","publisherId":"YZHJ","title":"硬质合金"},"keywords":[{"id":"4ab96806-afbe-41be-a574-bbb6082f8ace","keyword":"冲击弯曲试验","originalKeyword":"冲击弯曲试验"},{"id":"570423b8-dbd4-49f9-825b-7885fe1fbd24","keyword":"钴含量","originalKeyword":"钴含量"},{"id":"97e429d4-3935-4ccd-a39b-7892f6931ffb","keyword":"晶粒度","originalKeyword":"晶粒度"},{"id":"48ede7c7-f876-4bd2-b645-1de4a1a052a9","keyword":"冲击疲劳性能","originalKeyword":"冲击疲劳性能"}],"language":"zh","publisherId":"yzhj200801008","title":"钴含量及晶粒度对硬质合金冲击疲劳性能的影响","volume":"25","year":"2008"},{"abstractinfo":"研究了添加剂、电流密度对镍钴合金电铸层应力和钴含量的影响.采用SEM、能谱仪和X射线衍射分析了添加剂和电流密度对铸层形貌及微观结构的影响.结果表明:添加剂TN2能够使铸层产生压应力;TN3能够使铸层产生张应力,TN3与TN2配合使用,能够使铸层应力达到平衡值零.电流密度增加时,当电流密度小于6A/dm2时,铸层应力随之增加;当电流密度大于6A/dm2时,铸层应力随之减小.添加剂对铸层钴含量影响不明显而电流密度对铸层钴含量的影响较明显;TN2,TN3的加入能够使铸层更平滑、晶粒细致紧密.添加剂TN2对衍射峰(200)影响较大,对晶面具有一定的选择性;添加剂TN3对晶面具有较强的选择性,易在(200)面吸附,抑制其生长,此时晶体的生长方向主要为[100].随着电流密度的增大,衍射峰出现宽化的趋势.","authors":[{"authorName":"裴和中","id":"6a65a3fd-4362-4ddb-a14b-d3106717e166","originalAuthorName":"裴和中"},{"authorName":"黄攀","id":"16baf55d-68b2-444f-bdfe-158cffe51ce1","originalAuthorName":"黄攀"},{"authorName":"史庆南","id":"1114d398-1519-4deb-94f8-624f635f6c67","originalAuthorName":"史庆南"},{"authorName":"陆峰","id":"ad5a909d-5712-4c45-ab94-e967a80a758d","originalAuthorName":"陆峰"},{"authorName":"张俊","id":"94309c0b-dfff-4501-a19f-c3c1ae323abb","originalAuthorName":"张俊"},{"authorName":"张国亮","id":"3963f374-9e99-42e2-a455-78a57fde5d88","originalAuthorName":"张国亮"}],"doi":"10.3969/j.issn.1001-4381.2013.06.004","fpage":"18","id":"c5fc2393-a32c-450a-8861-d1300907cded","issue":"6","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"46706e1d-a4d0-4cf0-9e76-6fc8ed3930fc","keyword":"电铸镍钴合金","originalKeyword":"电铸镍钴合金"},{"id":"7c195e8f-6228-4a60-8e5e-e512413522ef","keyword":"添加剂","originalKeyword":"添加剂"},{"id":"6a41cd45-2a16-4959-8763-5f15e98b77cd","keyword":"电流密度","originalKeyword":"电流密度"},{"id":"bb88724c-6896-45c7-a9d7-41b31a3140f6","keyword":"应力","originalKeyword":"应力"},{"id":"e1fe757b-4006-40ad-921c-750152118b51","keyword":"钴含量","originalKeyword":"钴含量"},{"id":"39402bc6-1508-41fa-ab60-36014d1ee34d","keyword":"组织形貌","originalKeyword":"组织形貌"}],"language":"zh","publisherId":"clgc201306004","title":"添加剂和电流密度对镍钴合金电铸层组织结构的影响","volume":"","year":"2013"},{"abstractinfo":"对于硬质合金而言,碳含量对合金的组织性能有重要影响.介绍了制备超细及纳米硬质合金时影响碳含量变化的因素,包括粉末的制备工艺、烧结工艺、钴含量以及抑制剂和成形剂等.综述了碳含量变化对组织性能的影响,其中碳含量过高会出现石墨相,过低会出现脱碳相,碳含量过高或过低都会降低合金的力学性能.","authors":[{"authorName":"张梅琳","id":"4b8ed18e-44e5-4772-9d3b-518375a59765","originalAuthorName":"张梅琳"},{"authorName":"朱世根","id":"101e40ac-7835-480f-a57b-b78aa6eb6e71","originalAuthorName":"朱世根"},{"authorName":"朱守星","id":"860d1b7e-d99f-4abe-b8ad-72a25dcab0bb","originalAuthorName":"朱守星"}],"doi":"","fpage":"65","id":"214b5ea8-e0a6-4ac1-8272-cdd38e18c63e","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"4ff200e7-0bdc-40d5-b7eb-78b911df7b49","keyword":"硬质合金","originalKeyword":"硬质合金"},{"id":"97ecbcd2-0c77-4abf-bd1c-65a633977551","keyword":"碳含量","originalKeyword":"碳含量"},{"id":"dd5246d1-71d1-45cc-a68e-f1343bbb8718","keyword":"钴含量","originalKeyword":"钴含量"},{"id":"2a56a4aa-6adc-43e5-8a9b-9b76fbff0ccf","keyword":"烧结","originalKeyword":"烧结"}],"language":"zh","publisherId":"cldb200608019","title":"超细及纳米硬质合金中碳含量的变化及对组织性能的影响","volume":"20","year":"2006"},{"abstractinfo":"采用脉冲和直流电流制备Ni-Co合金电铸层.采用显微硬度计、能谱仪、扫描电镜(SEM)和X射线衍射仪测试并观察铸层的显微硬度、钴含量和微观结构.结果表明:利用脉冲电流和直流电流制备的铸层显微硬度均较高,且铸层的显微硬度随电流密度(Dk)增大而呈下降趋势.但脉冲电流制备的铸层硬度下降趋势较直流电流制备的铸层下降缓慢.铸层钴含量随着电流密度(Dk)的增大而减少,脉冲电流制备的铸层钴含量下降较缓.电源类型对铸层表面形貌影响较大.采用脉冲电流,铸层晶包均匀,呈菜花包状;采用直流电流,铸层晶粒分布不均匀,呈块状.与直流电流相比,脉冲电流对铸层微观结构影响不大.","authors":[{"authorName":"裴和中","id":"11bd6910-0b0b-4644-95e8-a50395387f3c","originalAuthorName":"裴和中"},{"authorName":"李雪","id":"2dde99eb-6e74-4f35-9db0-d2f936885029","originalAuthorName":"李雪"},{"authorName":"黄攀","id":"d6e72833-9795-4e32-b891-fdc82fb5bb69","originalAuthorName":"黄攀"},{"authorName":"陆峰","id":"61a5a989-0672-47ca-97b6-0056321795d8","originalAuthorName":"陆峰"},{"authorName":"张俊","id":"b803b2c4-9792-43df-aee2-f906dbda66bd","originalAuthorName":"张俊"},{"authorName":"张国亮","id":"92a769ea-6632-418e-8c7f-7ecaa28b5d73","originalAuthorName":"张国亮"}],"doi":"10.3969/j.issn.1005-5053.2014.2.004","fpage":"17","id":"80d9944b-fb9b-4414-b623-8190b2492c4e","issue":"2","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"6df23781-1eea-4e61-8715-348412e57891","keyword":"电铸镍钴合金","originalKeyword":"电铸镍钴合金"},{"id":"823b805e-a6fe-4ae7-a372-3a8e225e0d5b","keyword":"脉冲电流","originalKeyword":"脉冲电流"},{"id":"2bb37e84-eaf7-45bf-bfe1-41ae3842914c","keyword":"钴含量","originalKeyword":"钴含量"},{"id":"4aab9116-9cc2-40d6-8b06-4a7c94252a1c","keyword":"结构形貌","originalKeyword":"结构形貌"}],"language":"zh","publisherId":"hkclxb201402004","title":"电流类型对氨基磺酸盐型电铸Ni-Co合金组织及性能的影响","volume":"34","year":"2014"},{"abstractinfo":"采用放电等离子烧结方法制备了Ti(C,N)-Co金属陶瓷,研究了烧结温度和Co含量对TiCN基金属陶瓷力学性能的影响.结果表明:烧结温度在1400℃~1700℃范围内,当Co含量为1%时,随着温度的升高,样品的密度、弯曲强度和硬度不断增大;当Co含量为5%时,随着温度的升高,样品的密度、弯曲强度、硬度呈现先上升后下降的趋势.随着Co含量的增加,TiCN-Co金属陶瓷烧结致密化所需温度降低.烧结温度为1600℃、Co含量为5%时,金属陶瓷试样具有较高的综合力学性能,分别为弯曲强度815MPa和硬度HV101505.","authors":[{"authorName":"张帅","id":"9a33aec0-a0e3-4026-b314-164f550887ec","originalAuthorName":"张帅"},{"authorName":"唐思文","id":"b666762c-153b-4b93-87cb-d09204d27cd7","originalAuthorName":"唐思文"},{"authorName":"李鹏南","id":"3d0c6789-85f6-4664-b4e7-4a2308cdd139","originalAuthorName":"李鹏南"},{"authorName":"苏闯南","id":"32d82426-c545-4977-bbe8-561c6fccacf1","originalAuthorName":"苏闯南"},{"authorName":"肖雄","id":"eabfab26-c38a-4277-9dd9-23858023b01d","originalAuthorName":"肖雄"}],"doi":"10.14136/j.cnki.issn.1673-2812.2015.04.023","fpage":"587","id":"a9e04193-37c7-4617-aa9b-80e088ec3458","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"6f5121f1-eafd-4e34-9541-877b3491898c","keyword":"放电等离子烧结","originalKeyword":"放电等离子烧结"},{"id":"ef4dcf8b-0d50-40eb-81d0-918b6414149f","keyword":"碳氮化钛基金属陶瓷","originalKeyword":"碳氮化钛基金属陶瓷"},{"id":"57b92c58-18a3-4349-a5c5-c9164f85a323","keyword":"钴含量","originalKeyword":"钴含量"},{"id":"abb22c5c-21ae-4232-a610-fc8d1678b3b9","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"1ad51ca7-0da9-4168-a016-c41ac9b814a4","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clkxygc201504023","title":"放电等离子烧结制备Ti(C,N)-Co金属陶瓷的组织和性能","volume":"33","year":"2015"},{"abstractinfo":"为提高纯镍电铸模芯的使用寿命,以氨基磺酸镍为基础镀液,加入氨基磺酸钴并改变其含量以调整镍钴合金比,研究电铸液不同钴含量时电铸镍钴合金起始面、侧切面和终点面力学特性及显微组织的变化.结果显示:随着电铸液中钴含量增加,合金铸层的硬度增加,当电铸液氨基磺酸钴含量为8 g/L时,电铸层硬度最高达到540 HV;同时,材料抗拉强度和屈服强度也增加,氨基磺酸钴8 g/L时电铸镍钴合金达到1 901 MPa高强度的同时具有韧性不降的力学性能;添加钴元素有助于减少磨损,得到结晶构造为Ni(Co)固溶体的FCC结构;随铸液中钴含量增加,铸层晶核择优取向和生长主要沿着[111]方向;电铸镍钴合金平均晶粒尺寸为7.45~9.85 nm,起始面晶粒最细微,终点面晶粒最粗大.","authors":[{"authorName":"汪哲能","id":"56999c71-f0bc-4485-b9ad-904581bad645","originalAuthorName":"汪哲能"},{"authorName":"邱锡荣","id":"b0cfb77c-5319-4b08-8317-6ba5c10839d6","originalAuthorName":"邱锡荣"},{"authorName":"杨博伟","id":"303ce125-117e-455c-92a8-e55e33605926","originalAuthorName":"杨博伟"}],"doi":"","fpage":"59","id":"fc3ba1f0-aeb2-40ee-9959-99b021769f46","issue":"1","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"35de16af-7804-4ccc-9708-cd4d83df1948","keyword":"氨基磺酸镍","originalKeyword":"氨基磺酸镍"},{"id":"14f5fd9d-f533-4130-af7a-7c2c9e8e8da8","keyword":"镍钴合金","originalKeyword":"镍钴合金"},{"id":"df8cce2e-f40d-4ea6-9601-ef31a7189423","keyword":"电铸模芯","originalKeyword":"电铸模芯"},{"id":"e72e4e14-0bab-460b-903a-7080f3b3efbd","keyword":"性能","originalKeyword":"性能"},{"id":"ed9e78e5-d587-4f4d-b651-e429faa33457","keyword":"微观组织","originalKeyword":"微观组织"}],"language":"zh","publisherId":"clbh201601015","title":"电铸液中钴含量对镍钴合金电铸模芯性能的影响","volume":"49","year":"2016"},{"abstractinfo":"为获得耐蚀性良好的锌-钴合金镀层,必须维持镀液中的锌-钴含量在工艺范围内.采用EDTA滴定和分光光度相结合的方法测定碱性锌-钴合金镀液中的锌、钴含量.介绍了该方法的分析步骤,探讨了测量波长的确定,亚硝酸钠、镀液共存组分、酸度以及铜离子和铁离子等杂质对测量结果的影响.结果表明,在530 nm波长下,钴浓度在0-3 μg/mL范围内所测吸光度与钴浓度间的关系遵守比耳定律,该方法准确度高,回收率达97 %-103.5 %.","authors":[{"authorName":"侯燕","id":"a64e4945-a316-40c1-b277-162ea62aeaf7","originalAuthorName":"侯燕"},{"authorName":"仝湘滨","id":"c31a6a8f-4acc-4a2e-84ec-e9f666406bbe","originalAuthorName":"仝湘滨"}],"doi":"10.3969/j.issn.1004-227X.2002.05.013","fpage":"45","id":"b4fab034-defd-419a-bb07-cfad0b156a5b","issue":"5","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"113b05dd-43e0-4067-9360-6a095b061d13","keyword":"锌-钴合金","originalKeyword":"锌-钴合金"},{"id":"3f6ef7d1-4246-4c36-89ba-6f6bc7c14b9a","keyword":"电镀","originalKeyword":"电镀"},{"id":"62e71274-7d9f-44e5-a1dc-e88687dd0008","keyword":"碱性","originalKeyword":"碱性"},{"id":"3d599f52-de15-43fe-a8aa-0c9128e897ce","keyword":"分光光度法","originalKeyword":"分光光度法"},{"id":"d9fc5e17-9a75-4729-8be3-da9fc62e3222","keyword":"EDTA滴定法","originalKeyword":"EDTA滴定法"}],"language":"zh","publisherId":"ddyts200205013","title":"碱性锌-钴合金镀液中锌、钴含量的测定","volume":"21","year":"2002"},{"abstractinfo":"研究并提供了用差减法测定氧化氢氧化钴中二价钴占总钴元素含量的具体实验方法.实验发现:样品溶解步骤是整个分析过程中的关键,样品溶解时的酸度,样品量以及实验温度等对分析结果有较大影响.该方法所用试剂简单,操作简便,准确度高,结果可靠.标准偏差≤1.4%(n=6),相对标准偏差≤7.5%(n=6).","authors":[{"authorName":"常照荣","id":"0181af79-0cec-40ed-a467-59168173451f","originalAuthorName":"常照荣"},{"authorName":"徐秋红","id":"eaa0738a-0724-482f-b9d0-7502f4abdcb7","originalAuthorName":"徐秋红"},{"authorName":"郑洪河","id":"dc2ee69f-2ae2-4eeb-a4ff-1b412e2a3f00","originalAuthorName":"郑洪河"},{"authorName":"李云平","id":"6f29a4dc-8ca6-42fa-9899-d85a880d4a95","originalAuthorName":"李云平"},{"authorName":"刘院英","id":"b27b4df0-9d87-469e-bda6-7dff18e03b71","originalAuthorName":"刘院英"}],"doi":"10.3969/j.issn.1000-7571.2005.01.010","fpage":"36","id":"f8328769-130c-49df-89b4-202ab765d4b3","issue":"1","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"baa7b953-fb30-4e84-be71-4c2b5592a8e3","keyword":"氧化氢氧化钴","originalKeyword":"氧化氢氧化钴"},{"id":"b17200d1-aa5a-4499-8980-5868a7fb32f6","keyword":"二价钴含量","originalKeyword":"二价钴含量"},{"id":"1f81786d-3e2c-49fe-a707-715426876450","keyword":"差减法","originalKeyword":"差减法"},{"id":"a5fe5908-ca55-409e-8565-f9a0d7ca5beb","keyword":"测定","originalKeyword":"测定"}],"language":"zh","publisherId":"yjfx200501010","title":"氧化氢氧化钴中二价钴含量的测定","volume":"25","year":"2005"},{"abstractinfo":"采用LECO公司高频红外碳硫仪,对钴、钽、锆中碳含量的测定方法进行研究.对浴料的选择和配比、抑制剂的加入、提取功率的选择、比较器水平设定值和最短分析时间及试样的称量进行探讨.考察确定了最佳分析条件.本方法可准确测定钴、钽、锆中碳含量,灵敏度高,重现性好,测定范围0.000 5%~1.500%.","authors":[{"authorName":"鲍翠娥","id":"a24df1c7-b3a6-4913-ab06-26f20ba12cdb","originalAuthorName":"鲍翠娥"}],"doi":"10.3969/j.issn.1003-7292.2009.03.010","fpage":"184","id":"17220df9-ca68-4d84-a7f6-9ba1cafb7455","issue":"3","journal":{"abbrevTitle":"YZHJ","coverImgSrc":"journal/img/cover/YZHJ.jpg","id":"75","issnPpub":"1003-7292","publisherId":"YZHJ","title":"硬质合金"},"keywords":[{"id":"db4a330a-0d86-469d-9548-59b8f0f2c96e","keyword":"碳","originalKeyword":"碳"},{"id":"28bdb9b3-d89d-4c1d-9df6-4d4a62a0125f","keyword":"钴","originalKeyword":"钴"},{"id":"000507c7-5296-4a95-8c3c-2ceba5beadeb","keyword":"钽","originalKeyword":"钽"},{"id":"bcbfa6b3-4cbe-42f1-ab90-eb5c9cee2f57","keyword":"锆","originalKeyword":"锆"},{"id":"694fad84-8859-4ee4-8464-c2faa7a52546","keyword":"浴料","originalKeyword":"浴料"},{"id":"b17f4d0d-e3d8-40de-a249-5676a2e0ed0d","keyword":"高频感应","originalKeyword":"高频感应"},{"id":"1f6448f3-0f85-498a-b798-751b5e795e0a","keyword":"红外线吸收法","originalKeyword":"红外线吸收法"}],"language":"zh","publisherId":"yzhj200903010","title":"高频红外法测定钴、钽、锆中碳含量","volume":"26","year":"2009"},{"abstractinfo":"采用脉冲电沉积技术制备钴含量在2.4%~59.3%范围内的镍钴合金.利用XRD与TEM技术对纳米晶镍钴合金的组织结构进行表征.结果表明:所有成分的纳米晶镍钴合金均为面心立方结构的单相固溶体,平均晶粒尺寸为11~24 nm,且平均晶粒尺寸随钴含量的增加而减小,镍钴合金镀态下TEM组织中观察到的晶粒尺寸与XRD测量结果一致;纳米晶镍钴合金抗拉强度为1 300~1 650 MPa,断裂伸长率为10.5%~14.5%,镍钴合金的抗拉强度与断裂伸长率均随钴含量的增加而提高;随着钴含量的不断增加,镍钴合金在单向拉伸过程中的应力诱发晶粒长大被逐渐抑制,提高加工硬化率,塑性失稳被延迟,从而提高塑性.","authors":[{"authorName":"许伟长","id":"16d570b4-f33e-4aed-952c-b7cb63038dd6","originalAuthorName":"许伟长"},{"authorName":"戴品强","id":"2fe9a716-9503-4940-a9f9-02ccd7b054aa","originalAuthorName":"戴品强"},{"authorName":"郑耀东","id":"233cc954-4e28-4c71-b1dc-a7aa0e5377ad","originalAuthorName":"郑耀东"}],"doi":"","fpage":"92","id":"b4fa6150-f3fa-4eb7-8bfa-a2f32c2fc9f8","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"5081a29e-0cdb-46c0-8e1a-b149092d0155","keyword":"镍钴合金","originalKeyword":"镍钴合金"},{"id":"664ec6f9-f7f6-498f-80b0-248eddb7bcfb","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"219bd6e3-30d3-4c39-b91d-de6806a368f0","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"d83e2b81-076b-4a57-be93-3eb753f2501c","keyword":"晶粒长大","originalKeyword":"晶粒长大"},{"id":"01cffefc-8112-45ee-8251-8610f364f316","keyword":"变形机制","originalKeyword":"变形机制"}],"language":"zh","publisherId":"zgysjsxb201001015","title":"钴含量对电沉积纳米晶镍钴合金组织与力学性能的影响","volume":"20","year":"2010"}],"totalpage":2855,"totalrecord":28543}