张雅雅
,
崔建国
表面技术
doi:10.16490/j.cnki.issn.1001-3660.2015.09.013
目的:研究微波放电法对聚二甲基硅氧烷( PDMS)材料表面的改性效果。方法利用家用微波炉的微波作用以及自制的真空罩电极装置,产生低温等离子体放电,对PDMS材料表面进行激活处理。对处理后的PDMS材料表面接触角的恢复情况以及PDMS间的键合强度进行实验测试。结果微波放电处理后的PDMS材料表面初始呈现出很强的亲水性,当微波功率为140 W,工作5 s时,PDMS表面接触角可达到10。左右;通过观察发现随着放置时间的增加,PDMS材料表面接触角逐渐增大且在10天后恢复到原始疏水角状态;同时,经过改性的PDMS样品之间可实现较好的键合封装,其最优键合条件为80℃+1.5 h压合,其键合强度可达到12.4 N。结论使用微波放电法处理PDMS材料表面,可成功地对材料进行亲水改性处理,并实现PDMS间的很好键合。与传统等离子体处理键合方法相比,该方法简单、经济且高效。
关键词:
微波放电
,
低温等离子体
,
PDMS
,
接触角
,
键合强度
张雅雅
,
崔建国
表面技术
doi:10.16490/j.cnki.issn.1001-3660.2016.03.015
目的:聚二甲基硅氧烷( PDMS)作为微流控芯片研制中常用的高分子材料,其本身的疏水特性是影响微流控芯片整体键合效果的主要障碍。为了在短时间内成功实现PDMS与基底材料的有效键合与封装,设计一种可在普通实验室开展的低成本且高效的PDMS材料改性方法。方法基于紫外臭氧光照改性法对PDMS材料表面进行改性研究,通过正交试验深入研究紫外光照射时间、距离及通氧时间对PDMS表面改性效果的影响,并在50℃水浴环境下通过测量不同时间PDMS基片与盖片( PDMS或玻璃)的键合强度,从而确定最优工艺参数组合。结果相比于传统紫外光照射表面改性法的键合时间(大于50 h),本工艺可在6 h内成功实现PDMS的有效封装,并确定了P—P键合和P—G键合的最优参数组合,两者平均键合强度均大于200 kPa。结论整个工艺操作简单、成本低,可作为普通实验室开展微流控实验研究的有益补充。
关键词:
表面改性
,
紫外臭氧光照
,
聚二甲基硅氧烷
,
键合强度
,
最优工艺参数