{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以钛酸四丁酯(TBT)和 AgNO3为原料,采用溶剂热法一步合成了 Ag/TiO2核壳结构纳米纤维和纳米颗粒,并利用 SEM、TEM、XRD 等详细表征了样品的结构和组成。AgNO3添加量、水热反应温度、分散剂聚丙烯酸(PAA)等对产物的形貌、结构和晶型有较大影响,并进一步研究了形貌、结构和组成对光催化性能的影响,分析了造成影响的机制。","authors":[{"authorName":"王朋","id":"d0927dd2-666f-4dfc-aef7-bac58c2b8471","originalAuthorName":"王朋"},{"authorName":"杨穆","id":"d07fe21d-c7d0-4c4b-b2c2-9d0a60b404aa","originalAuthorName":"杨穆"},{"authorName":"彭超豪","id":"e273d850-4b63-4f8b-95eb-c3ff81e47d7a","originalAuthorName":"彭超豪"}],"doi":"10.3969/j.issn.1001-9731.2014.12.008","fpage":"12047","id":"21cfbc4e-cc45-439c-8f4f-1d89e72541c0","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6d18d5de-01dd-450e-a682-cdd7375e001f","keyword":"Ag/TiO2","originalKeyword":"Ag/TiO2"},{"id":"fe397cba-8b2f-4dcf-95fc-7c3531815c0e","keyword":"核壳纳米纤维","originalKeyword":"核壳纳米纤维"},{"id":"2ddb194a-42db-4f51-a685-8c6b6ba8996f","keyword":"核壳纳米颗粒","originalKeyword":"核壳纳米颗粒"},{"id":"5b5f00b8-b09a-4fc8-b12f-f6b98c3ea5fc","keyword":"溶剂热法","originalKeyword":"溶剂热法"},{"id":"ef0efe5e-cee2-4e9b-b7a3-f64a0177b129","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"gncl201412008","title":"溶剂热法一步合成Ag/TiO2核壳纳米材料及其光催化性能研究","volume":"","year":"2014"},{"abstractinfo":"依椐巴克豪森效应,用特制的检测器和信号处理系统,研究了钢轨材料中的巴克豪森信号随拉应力、压应力和温度的变化关系,发现在材料弹性范围内,巴克豪森信号随拉应力增加而增加,随压应力的增加而减小,并与温度变化呈线性关系.将测试仪进行改进后,可用于现场动态测试.","authors":[{"authorName":"田浩","id":"737c84c0-4b6e-47a5-ad7e-b4bcb73c6973","originalAuthorName":"田浩"},{"authorName":"于石生","id":"817b180f-4637-4f9f-a514-e1353e27f328","originalAuthorName":"于石生"},{"authorName":"赵小莹","id":"d19fe6af-ba09-4ddc-ad1b-845f60a0a8d9","originalAuthorName":"赵小莹"}],"doi":"10.3969/j.issn.1005-0299.2004.02.023","fpage":"196","id":"7ed8f33e-020f-45ef-933c-63b000a2003e","issue":"2","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"e4a584e2-1211-4534-8116-e20e528dc7b8","keyword":"巴克豪森效应","originalKeyword":"巴克豪森效应"},{"id":"2e30af6b-5387-47b3-abfd-65292bb4deb6","keyword":"磁畴","originalKeyword":"磁畴"},{"id":"52de00b9-1eaf-4038-9511-fdfecddba379","keyword":"钢轨","originalKeyword":"钢轨"},{"id":"b8cae24a-7805-4487-bb6a-bbea7cad1be5","keyword":"纵向应力","originalKeyword":"纵向应力"},{"id":"671ef7ff-9591-48dd-a52f-cebf1f5e51a8","keyword":"温度","originalKeyword":"温度"}],"language":"zh","publisherId":"clkxygy200402023","title":"利用巴克豪森效应测定钢轨纵向应力","volume":"12","year":"2004"},{"abstractinfo":"彭宁阱是用于直接测量原子核质量的精确设备.为了保证彭宁阱的测量精度,需在阱中心产生精准的四极静电场,而四极静电场是通过对彭宁阱的核心电极施加合适的电压产生的.采用公式推导法和最小二乘法两种方法计算得到了LPT核心电极需加电压幅值.对于公式推导法,电压值完全从理论出发,经公式推导后计算得到;最小二乘法的出发点是使取样偏差的平方和最小,且通过仿真模拟考虑了电极的实际几何形状.由这两种方法得到的非四极项系数C4和C6,可用于估算因偏离理想四极电场所产生的实验误差.虽然这两种方法的出发点不同,但都可以在阱中心产生需要的四极电场.","authors":[{"authorName":"孙宇梁","id":"66a33298-bff6-4a8d-8e03-12dcbb5cddf6","originalAuthorName":"孙宇梁"},{"authorName":"王永生","id":"26342b6a-94dd-4fe0-8bdd-699936f3ffd6","originalAuthorName":"王永生"},{"authorName":"田玉林","id":"456dff8e-42d7-4330-a30c-cc4de1004b96","originalAuthorName":"田玉林"},{"authorName":"王均英","id":"3a15b361-f99c-444f-871b-8afc8d0506fc","originalAuthorName":"王均英"},{"authorName":"黄文学","id":"097fff8d-6a99-4d46-aecd-89b31976e0b5","originalAuthorName":"黄文学"}],"doi":"10.11804/NuclPhysRev.32.03.341","fpage":"341","id":"f7b275e0-25cc-46db-b247-d4791f844401","issue":"3","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"555ccb15-cb30-45c6-8d11-50a2dcb08b7e","keyword":"彭宁阱","originalKeyword":"彭宁阱"},{"id":"45437d63-92ef-44a5-b2e4-1edc5c1b68a3","keyword":"质量测量","originalKeyword":"质量测量"},{"id":"1f413a8c-2165-4414-a6ef-aa88f4dd60eb","keyword":"四极电场","originalKeyword":"四极电场"},{"id":"cddd2ade-8f59-49b3-891e-7bd85113206c","keyword":"电极电压","originalKeyword":"电极电压"}],"language":"zh","publisherId":"yzhwlpl201503015","title":"兰州彭宁阱核心电极的最优电压幅值计算","volume":"32","year":"2015"},{"abstractinfo":"","authors":[{"authorName":"屈乃琴","id":"e405e10f-c18d-4604-b2f0-db26075dfc26","originalAuthorName":"屈乃琴"}],"doi":"10.3969/j.issn.1674-3962.2003.07.025","fpage":"26","id":"544552ac-6bb8-4756-b55a-63dcc67b66f7","issue":"7","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"9c2f6aae-d422-430e-9dc3-6f5e9133e5e1","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"zgcljz200307025","title":"豪梅特公司概况","volume":"","year":"2003"},{"abstractinfo":"简要介绍了纳米超分子化学的产生、发展及应用,重点综述了:①超分子纳米材料的合成及应用;②新型超分子纳米材料制备的新方法及其应用;③新型超分子纳米材料的合成及在医药学方面的应用.并对纳米超分子化学的发展进行了展望.","authors":[{"authorName":"张来新","id":"1bf4243b-ccd2-47fd-b23a-5540e6a777ff","originalAuthorName":"张来新"},{"authorName":"胡小兵","id":"97e18d71-e53a-40fc-a9d6-dd1e286793b7","originalAuthorName":"胡小兵"}],"doi":"","fpage":"101","id":"69d8a2b5-8444-4b42-8fca-d0e9d1eb740e","issue":"5","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"28f66b3b-cfb1-4f09-aa27-d05672febe6f","keyword":"纳米超分子化学","originalKeyword":"纳米超分子化学"},{"id":"2cf6653f-9066-473a-898f-5c0c30d75dcb","keyword":"合成","originalKeyword":"合成"},{"id":"f6363cbf-24b8-4e3b-b99a-ee0519e72aff","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"hccllhyyy201505023","title":"纳米超分子化学","volume":"44","year":"2015"},{"abstractinfo":"超光滑表面在现代科学技术中具有重要意义.超精密抛光技术是实现超光滑表面的主要方法.本文对超光滑表面的概念、影响超精密抛光质量的因素、几种超精密抛光方法及其所能达到的抛光效果、抛光效果的测量与评价方法等进行了介绍.同时描述了超精密抛光的发展阶段、现状和发展趋势.","authors":[{"authorName":"谢会东","id":"2b954ee3-6a40-4c25-a325-5f531cd1b82c","originalAuthorName":"谢会东"},{"authorName":"王晓青","id":"d7ce1903-af41-4970-80bb-09003bfbf470","originalAuthorName":"王晓青"},{"authorName":"沈光球","id":"deb9ea70-3ee5-4361-97cb-be5b6ee05981","originalAuthorName":"沈光球"}],"doi":"10.3969/j.issn.1000-985X.2004.06.034","fpage":"1035","id":"a9cd15f2-9b31-4352-bd9c-5a32c9084dae","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"627ac45e-6c17-4b2d-ac1b-fb8ecaea69cd","keyword":"超光滑表面","originalKeyword":"超光滑表面"},{"id":"dd75676b-16d6-4a60-a03b-e0363d561bd5","keyword":"超精密抛光","originalKeyword":"超精密抛光"},{"id":"0672cb53-c7c2-4d2e-b012-5995a595a5cf","keyword":"表面粗糙度","originalKeyword":"表面粗糙度"},{"id":"40149007-839c-4993-9e18-f28d70d4726d","keyword":"平面度","originalKeyword":"平面度"}],"language":"zh","publisherId":"rgjtxb98200406034","title":"晶体的超精密抛光","volume":"33","year":"2004"},{"abstractinfo":"介质铁电超晶格薄膜是一类新型的薄膜材料,已逐渐开始受到重视,成为研究的热点.本文主要分析了铁电超晶格薄膜的结构特点、组分材料、介电铁电性能;介绍了其在实际中的应用以及在近几年的发展;概括了几种常用的介质铁电超晶格薄膜的生长技术及其影响因素;最后对铁电超晶格薄膜的发展和应用前景进行了展望.","authors":[{"authorName":"郝兰众","id":"6b76ff21-52b4-438f-930d-d40ae669ebec","originalAuthorName":"郝兰众"},{"authorName":"李燕","id":"0f54288b-eec0-44f0-846c-ada90687d6bc","originalAuthorName":"李燕"},{"authorName":"刘云杰","id":"cf67888c-abaf-410c-91ca-416b81c8c17d","originalAuthorName":"刘云杰"},{"authorName":"邓宏","id":"b0431513-3639-41a8-8661-287234c6782d","originalAuthorName":"邓宏"}],"doi":"","fpage":"1533","id":"31136dc8-182f-4a35-b8ab-98b5abf5703c","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"81298464-3bde-4b0d-8c3e-ebf6d7d727f3","keyword":"铁电超晶格","originalKeyword":"铁电超晶格"},{"id":"b6bf87f0-6b3d-4916-a378-ab081166aba4","keyword":"y薄膜","originalKeyword":"y薄膜"},{"id":"0a3eb80c-f214-47cb-8692-59ce48e81071","keyword":"分子束外延","originalKeyword":"分子束外延"}],"language":"zh","publisherId":"gncl2004z1431","title":"铁电超晶格薄膜","volume":"35","year":"2004"},{"abstractinfo":"从钢中夹杂物的评定方法和控制途径、超纯洁化冶炼工艺、夹杂物水平及其疲劳性能等方面对超纯洁弹簧钢的特点作了比较详细的介绍.","authors":[{"authorName":"惠卫军","id":"24d1443d-a6b8-4434-976a-a8d79e4103c7","originalAuthorName":"惠卫军"},{"authorName":"董瀚","id":"f2701d07-b0f5-43fc-a999-feec31a6a0b1","originalAuthorName":"董瀚"},{"authorName":"曾新光","id":"67256744-38c6-4c7f-bc44-e5024ef8634e","originalAuthorName":"曾新光"},{"authorName":"邢献强","id":"b2274d38-ab18-4025-88b3-8967c7cc97a2","originalAuthorName":"邢献强"},{"authorName":"李强","id":"ff0a235f-da4a-4998-bc21-7f59a6589c8b","originalAuthorName":"李强"}],"doi":"","fpage":"68","id":"339a02e9-1404-46eb-9d5e-a142f8605e18","issue":"9","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"05e00ecc-09fd-4ec5-837c-fac56205b436","keyword":"弹簧钢","originalKeyword":"弹簧钢"},{"id":"931850af-97b0-46bd-b9cf-d2039fcd4033","keyword":"非金属夹杂物","originalKeyword":"非金属夹杂物"},{"id":"f309e480-1b55-46e8-81fc-81939294b14a","keyword":"疲劳性能","originalKeyword":"疲劳性能"}],"language":"zh","publisherId":"gt199909017","title":"超纯洁弹簧钢","volume":"34","year":"1999"},{"abstractinfo":"对一种超塑性温度相对较低的双相钛合金SPZ的超塑性能进行了研究.结果表明:740~800℃,应变速率恒为1.11×10-3s-1时,SPZ合金的最大拉伸延伸率均超过1600%;760°C,合金的超塑延伸率可高达2149%.760℃,应变速率高达1.11×10-2s-1时,合金的超塑延伸率仍可达1380%.也就是说,700℃/1hAC处理后,SPZ合金在试验温度范围内具有低温高速超塑性.SEM观察发现,超塑变形前,合金的晶粒细小均匀,平均晶粒尺寸只有0.89μm;应变速率为2.22×10-3s-1,740℃,760℃变形后SPZ合金的晶粒尺寸分别为1.51μm,2.33μm.超塑性变形的微观机制是以晶界滑动为主,晶内变形以及位错蠕变起了协调作用.","authors":[{"authorName":"曾立英","id":"be020d8c-6db2-4147-88aa-e52d4c7099d7","originalAuthorName":"曾立英"},{"authorName":"赵永庆","id":"b5f544f7-1080-4a4f-81ec-5193434a5ffc","originalAuthorName":"赵永庆"},{"authorName":"李丹柯","id":"6129a03e-7b31-48aa-8147-6d3c480b880c","originalAuthorName":"李丹柯"},{"authorName":"李倩","id":"c162b688-dd2e-4280-ac14-7c499c38aff3","originalAuthorName":"李倩"}],"doi":"10.3969/j.issn.1005-5053.2006.05.002","fpage":"6","id":"af72521d-8443-4afa-b550-fd0e895061c4","issue":"5","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"a62770fd-5bce-4bf0-93e0-26e66274b558","keyword":"低温超塑性","originalKeyword":"低温超塑性"},{"id":"2aafecb2-4129-4b7d-a144-cd568990fe30","keyword":"双相钛合金","originalKeyword":"双相钛合金"},{"id":"86133297-e69a-449d-9fc9-79fb727b808a","keyword":"延伸率","originalKeyword":"延伸率"},{"id":"b8f32ac9-899f-4d69-82e6-e2a3b3ba5f63","keyword":"细晶组织","originalKeyword":"细晶组织"},{"id":"77f39882-dd1b-4709-a599-f687b1c89d83","keyword":"变形机制","originalKeyword":"变形机制"}],"language":"zh","publisherId":"hkclxb200605002","title":"低温超塑性钛合金的超塑性研究","volume":"26","year":"2006"},{"abstractinfo":"材料的拉伸断裂问题同时也是断裂延伸率问题,而材料的超塑性以其大的断裂延伸率为主要特征.自超塑性现象发现以来,人们从来没有停止过对超塑性大延伸率变形本质的探索.这方面的文献特别多,但主要集中在超塑性微观机理和变形机制方面,而对于超塑性变形力学规律方面的研究则相对较少.实际上,超塑性大延伸率与其力学稳定性密切相关,并由其特殊的断裂机制所决定.因此,本文首先从超塑性的微观断裂机制出发,着重回顾超塑性孔洞的形核、生长和连接的微观物理机制的研究进展.然后,主要从宏观力学稳定变形出发,回顾国内外有关超塑性拉伸过程中颈缩的产生和发展导致的断裂延伸率或极限应变的力学分析的研究工作,并作了相应的归类和评述.结论指出:尽管超塑性断裂机制的研究很多,但是缺乏统一的认识,仍需要长期的基础性工作.目前的首要任务就是从超塑性拉伸宏观力学规律出发,依据现代数值分析技术深入研究其力学稳定变形机制,以便揭示超塑性大延伸率现象的力学本质.在分析过程中,应采用精确定量的本构方程,并考虑变形路径等外部条件的影响.","authors":[{"authorName":"管志平","id":"b605e4fc-56ea-47ae-b92b-eb90346743da","originalAuthorName":"管志平"},{"authorName":"马品奎","id":"0cbe7a87-03c3-4c1e-bbdf-76e6891e55a5","originalAuthorName":"马品奎"},{"authorName":"宋玉泉","id":"ae536dbc-db99-4123-aafc-0346f75da544","originalAuthorName":"宋玉泉"}],"doi":"10.3724/SP.J.1037.2013.00078","fpage":"1003","id":"eee28573-24d9-4110-8afc-741a3f4efcb8","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"3f7d2b90-9bf0-4919-ac8b-b0ae9d471ef4","keyword":"超塑性","originalKeyword":"超塑性"},{"id":"2f983e41-cfe5-4b2b-bd17-3f8fda008e70","keyword":"拉伸","originalKeyword":"拉伸"},{"id":"1e9a8e63-ac17-499b-ba94-1c10321436bc","keyword":"断裂延伸率","originalKeyword":"断裂延伸率"},{"id":"6349218e-e484-48da-abf6-09a0f78a3a9c","keyword":"极限应变","originalKeyword":"极限应变"},{"id":"4f990cd4-5bc5-415f-9759-82397dc571a1","keyword":"孔洞","originalKeyword":"孔洞"}],"language":"zh","publisherId":"jsxb201308015","title":"超塑性拉伸断裂分析","volume":"49","year":"2013"}],"totalpage":524,"totalrecord":5238}