{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"讨论了在负压沉积条件下基体法制备气相炭纤维时,催化剂种类和反应温度的变化对气相生长炭纤维形态的影响.通过实验发现温度和催化剂的种类对气相生长炭纤维的形态有较大的影响.在同一温度下,分别采用铁基催化剂和镍基催化生长出的炭纤维具有相当大的差异,这种差异与溶解在金属催化剂液相中的碳原子从金属液界面的析出模式直接相关,当整个胞晶界面都均匀地析出碳原子时为实心炭纤维,而主要沿胞晶界面的外环析出时为中空炭纤维;在实验条件下铁基催化剂生成的是实心纤维而镍基催化剂生成的是中空纤维.即使采用同一种镍基催化剂,在不同的反应温度下,也将生成不同形状的纤维.在低温下生成的是中空纤维,而在高温下生成的是树枝状的二次分叉纳米纤维.同样,铁基催化剂在低温下生成均匀光滑的连续纤维,而高温下生成的是较细且具有分叉结构的纤维.更进一步的机理分析表明气相生长炭纤维的这种分叉形态与头部的金属催化剂液相的稳定形态相关.铁基与镍基催化剂的金属形态在低温下是相对稳定的,但温度升高后,催化剂液相界面形态变得不稳定,进而导致产生分岐结构,故生成了分叉的炭纤维.","authors":[{"authorName":"闫桂沈","id":"1cda046a-4563-43d4-9d25-f04796a57a90","originalAuthorName":"闫桂沈"},{"authorName":"李贺军","id":"6dd78ed6-6cd2-42da-a346-190586e8b2dd","originalAuthorName":"李贺军"},{"authorName":"郝志彪","id":"8c12c297-fe8a-44ff-9cd1-d6de181131eb","originalAuthorName":"郝志彪"}],"doi":"10.3969/j.issn.1007-8827.2002.03.009","fpage":"43","id":"66b20153-0491-426e-b34e-25662fd8488b","issue":"3","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"c05129e5-a3f8-4ec1-8f6a-c308a0ca05bc","keyword":"催化生长炭纤维","originalKeyword":"催化生长炭纤维"},{"id":"97ef0d14-8304-420c-ab1f-44b6ce07f2df","keyword":"纤维结构","originalKeyword":"纤维结构"},{"id":"155051df-d822-4439-94bb-77fe987c1092","keyword":"反应温度","originalKeyword":"反应温度"},{"id":"9089fce3-e807-421a-b6c2-7c706128764a","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"f2be519d-480c-4ab8-bcdd-9e98f8413f13","keyword":"中空纤维","originalKeyword":"中空纤维"}],"language":"zh","publisherId":"xxtcl200203009","title":"负压下反应温度和催化剂的种类对于气相生长炭纤维生长形态的影响","volume":"17","year":"2002"},{"abstractinfo":"以脱油沥青(DOA)为碳源,氯化铁为催化剂,在氩气和氢气的混合气氛下利用化学气相沉积法(CVD)制备了不同形貌的气相生长炭纤维(VGCFs).讨论了在温度为1 100℃时,不同的反应时间(分别为10 min,20 min,25 min,30 min和40 min)对产物形貌和结构的影响.利用场发射扫描电镜(FE-SEM)、高分辨透射电镜(HRTEM)、X-射线衍射(XRD)和拉曼(Raman)光谱,对不同工艺参数下合成的产物进行了结构表征.结果表明:随着反应时间的增加,气相生长炭纤维的形貌由弯曲变得相对平直,进而相互贯穿;当反应时间为10 min和20 min时,气相生长炭纤维的直径分布在1.0μm~1.2 μm之间;当反应时间为25 min,30min和40 min时,气相生长炭纤维的直径分布范围分别为250 nm~300 nm,350 nm~400 nm,700 nm~800 nm.另外,还观察到了V型的气相生长炭纤维.","authors":[{"authorName":"许并社","id":"62a2e953-4d7e-46e2-9afe-e28f709703f5","originalAuthorName":"许并社"},{"authorName":"张春一","id":"9f1be600-de24-4de1-9474-ed76fd8f1b74","originalAuthorName":"张春一"},{"authorName":"杨永珍","id":"c66692ea-d735-43da-9118-47f58b572b90","originalAuthorName":"杨永珍"},{"authorName":"刘旭光","id":"d989e7e2-faa9-43e2-939c-c8c2df451fa0","originalAuthorName":"刘旭光"},{"authorName":"罗秋苹","id":"802f0b4d-050a-4200-bc45-f2e95781573d","originalAuthorName":"罗秋苹"}],"doi":"10.3969/j.issn.1007-8827.2007.03.001","fpage":"193","id":"34d32d9e-5798-4d10-90cf-8b463de8a66f","issue":"3","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"693dc545-1055-476a-92ee-86e8c5e41484","keyword":"脱油沥青","originalKeyword":"脱油沥青"},{"id":"94d0f557-fd64-46b9-9d0d-c47280637f16","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"},{"id":"d4f6b2bf-b9cb-46a0-b101-232e994286fd","keyword":"气相生长炭纤维","originalKeyword":"气相生长炭纤维"},{"id":"b19db8e2-4aa6-44e6-8faa-895fab8b3a12","keyword":"反应时间","originalKeyword":"反应时间"}],"language":"zh","publisherId":"xxtcl200703001","title":"FeCl3催化生长脱油沥青基气相生长炭纤维","volume":"22","year":"2007"},{"abstractinfo":"为了研究气相生长纳米炭纤维在炭/炭复合材料制备中的应用,采用均热式化学气相沉积技术,以针刺PAN炭纤维薄毡为基体,二茂铁为催化剂前驱体,丙烯为碳源,氮气为载气,在炉压1.0kPa~1.3kPa,沉积温度880℃、920℃下进行了Fe催化PAN炭纤维原位生长纳米炭纤维的实验.经不同时间沉积后的样品在扫描电镜(SEM)下进行观察,发现880℃时沉积4h后在PAN炭纤维周围生成大量的原位生长纳米炭纤维,而在920℃时因催化剂失效导致热解炭对Fe催化剂颗粒包覆,形成颗粒状热解炭.","authors":[{"authorName":"朱东波","id":"0e6c9fa7-63d8-4e26-9e38-81b0d02a7da9","originalAuthorName":"朱东波"},{"authorName":"黄启忠","id":"0511e2db-492a-4fea-976f-a6f86b5cc9c2","originalAuthorName":"黄启忠"},{"authorName":"李晔","id":"f03c495d-e8bb-4e6d-b59d-9bd3daa634b1","originalAuthorName":"李晔"}],"doi":"10.3969/j.issn.1007-8827.2002.03.014","fpage":"66","id":"7163f559-b243-4c08-85e0-50d4adbb8dd7","issue":"3","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"0ab62227-921d-41e7-b4f4-5ee11688305f","keyword":"原位生长纳米炭纤维","originalKeyword":"原位生长纳米炭纤维"},{"id":"90d7ccbe-a8da-43a2-a0c8-de831d3c5119","keyword":"Fe催化","originalKeyword":"Fe催化"},{"id":"979bad0b-3586-415d-887c-71d732c3892d","keyword":"炭/炭复合材料","originalKeyword":"炭/炭复合材料"}],"language":"zh","publisherId":"xxtcl200203014","title":"Fe催化PAN炭纤维原位生长纳米炭纤维","volume":"17","year":"2002"},{"abstractinfo":"研究了以Fe或Ni为催化剂采用有机物催化热解法制备的纳米炭纤维的形貌和结构.发现在两种情况下纳米炭纤维生长机理完全不同:以Fe为催化剂纳米炭纤维基本符合气-液-固(VLS)催化生长机制(也称溶解扩散机制),而以Ni为催化剂纳米炭纤维则符合固相催化生长机制.\n","authors":[{"authorName":"苏革","id":"ca029044-d67b-4bf2-824e-c0b6af82bfb9","originalAuthorName":"苏革"},{"authorName":"杜金红","id":"d6a08436-f5ab-490e-bbe9-1404d9823051","originalAuthorName":"杜金红"},{"authorName":"范月英","id":"b8c0e09d-f58d-4482-b19d-b1c37a0d49b3","originalAuthorName":"范月英"},{"authorName":"沈祖洪","id":"c2e2d67e-95f8-4c3b-a267-d1a25eaee152","originalAuthorName":"沈祖洪"},{"authorName":"康宁","id":"b8a617e4-d445-4f15-ba14-c7d58e786243","originalAuthorName":"康宁"},{"authorName":"成会明","id":"8e3023fe-5d1c-4fdb-a16e-3e27c26967a7","originalAuthorName":"成会明"}],"doi":"10.3321/j.issn:1005-3093.2001.06.006","fpage":"623","id":"7fe888f8-7432-401a-a04b-e041c4776e19","issue":"6","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"1fc3baad-8418-470c-957f-7e5f179e6f4b","keyword":"纳米炭纤维","originalKeyword":"纳米炭纤维"},{"id":"8620c373-3a35-4d5a-8511-42c6f661dcb7","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"1a1cfa7b-f782-4c19-93c8-f881b75c6f56","keyword":"生长机理","originalKeyword":"生长机理"}],"language":"zh","publisherId":"clyjxb200106006","title":"用不同催化剂制备纳米炭纤维生长机理","volume":"15","year":"2001"},{"abstractinfo":"通过氢电弧法,制备了碳化硅纳米粒子,并以碳化硅纳米粒子为催化剂,乙炔为碳源,在管式炉中利用化学气相沉积(CVD)法制备了纳米碳纤维(CNFs).利用X射线衍射谱仪(XRD),扫描电子显微镜(SEM),高分辨透射电子显微镜(HRTEM),对碳化硅和碳纤维进行了形貌及结构分析,结果表明,得到的碳化硅为结晶良好的面心立方的β-SiC晶体,以此为催化剂得到的碳纤维以碳化硅粒子为中心对称生长,直径与碳化硅粒子直径大致相当,当催化剂为单晶时产物多为螺旋型纳米碳纤维,而当催化剂颗粒为多晶时,得到的多为直线型碳纤维.","authors":[{"authorName":"常琛","id":"b3b5cf3f-271f-45f2-8843-cec9eff401bd","originalAuthorName":"常琛"},{"authorName":"郝春成","id":"2712e538-2780-4764-9f0c-1e76df0ca9e1","originalAuthorName":"郝春成"}],"doi":"","fpage":"1713","id":"e4191d56-2701-4d13-a4b2-44d4c18c2684","issue":"7","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"3a33594f-6255-463e-bc6a-b02f54d4025f","keyword":"碳化硅","originalKeyword":"碳化硅"},{"id":"82a58e86-da45-4658-a9e6-6b9f10d31df7","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"e261f125-1256-48f5-8298-a4522679e296","keyword":"氢电弧法","originalKeyword":"氢电弧法"},{"id":"d5bbbe26-8e55-46fa-b162-b24dfca89315","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"}],"language":"zh","publisherId":"rgjtxb98201407021","title":"纳米碳化硅催化生长纤维生长机理分析","volume":"43","year":"2014"},{"abstractinfo":"综述了当前气相生长纳米炭纤维的研究现状,对纳米炭纤维的制备方法、结构特征、性能和应用前景进行了概述,并简述了本研究小组采用改进流动催化剂法制备的纳米炭纤维.","authors":[{"authorName":"范月英","id":"af9589a9-12da-4ad4-97fe-6f0329e498d0","originalAuthorName":"范月英"},{"authorName":"成会明","id":"45fd6875-6eb9-420d-ade3-fa84ba30f6b2","originalAuthorName":"成会明"},{"authorName":"苏革","id":"c61f7895-40dd-40cf-811c-ca0b155ce031","originalAuthorName":"苏革"},{"authorName":"魏永良","id":"a1f1354f-7f4c-4440-a487-43ed445bc8d1","originalAuthorName":"魏永良"},{"authorName":"沈祖洪","id":"c53b1dc2-6fd5-45e2-b3b3-6bc0b84ed1cf","originalAuthorName":"沈祖洪"}],"doi":"10.3969/j.issn.1007-8827.1999.02.002","fpage":"14","id":"0edf8d64-ad10-4ab0-98d1-bf20b898c228","issue":"2","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"726626ab-d8e3-4c15-895a-6a481cafbe5f","keyword":"气相生长纳米炭纤维","originalKeyword":"气相生长纳米炭纤维"},{"id":"199cd71a-3e8a-4f84-a394-5db896810917","keyword":"流动催化剂法","originalKeyword":"流动催化剂法"}],"language":"zh","publisherId":"xxtcl199902002","title":"气相生长纳米炭纤维的研究进展","volume":"14","year":"1999"},{"abstractinfo":"采用电镀工艺制备催化剂Ni膜,以化学气相沉积方法合成螺旋纳米碳纤维,通过扫描电镜(SEM)、X射线衍射(XRD)和偏光显微镜对螺旋纳米碳纤维的形态和结构进行表征.研究了电镀时间、电镀电流对螺旋纳米碳纤维生长的影响;并通过波导法对制备出的螺旋状纳米碳纤维测试在12.4~18GHz频段的电磁参数,考察其吸波性能.","authors":[{"authorName":"安玉良","id":"e1f88a97-5608-4da6-956b-86e13b85ebc3","originalAuthorName":"安玉良"},{"authorName":"候青怡","id":"69a55ac4-1f27-4759-848c-2040ee79f843","originalAuthorName":"候青怡"},{"authorName":"袁霞","id":"8bf90fac-3554-4f10-afdd-92019f38918a","originalAuthorName":"袁霞"},{"authorName":"赵晖","id":"ba38e19b-9166-4284-aa13-b93b3a76b09f","originalAuthorName":"赵晖"},{"authorName":"张罡","id":"8fa0cbf9-237c-4a42-874a-f11c741fa5f1","originalAuthorName":"张罡"}],"doi":"","fpage":"327","id":"cdc62f7d-a2ce-4fb8-a8f6-f192e53bbbcd","issue":"z2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"1c50a3b4-7f0c-4acf-8b30-eb1024cd36ee","keyword":"螺旋纳米碳纤维","originalKeyword":"螺旋纳米碳纤维"},{"id":"1309574e-e7c7-47b6-b276-7bd4b1202bc4","keyword":"电镀","originalKeyword":"电镀"},{"id":"7957f99f-e7c9-4e0f-8386-e80737a23ab4","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"},{"id":"9c370ab0-c8d1-46bc-8814-df9ca3de2a79","keyword":"制备","originalKeyword":"制备"},{"id":"5f75f41a-c723-4c9e-bdea-21d06e8401a1","keyword":"电磁性能","originalKeyword":"电磁性能"}],"language":"zh","publisherId":"gncl2010z2038","title":"电镀Ni膜催化生长螺旋纳米碳纤维及其电磁性能研究","volume":"41","year":"2010"},{"abstractinfo":"采用微波加热法,在单晶硅基底上生长了铜纳米粒子,并以铜纳米粒子为催化剂,乙炔为碳源,氢气为保护气,在管式炉中制备了碳纤维.利用高视频显微仪观察单晶硅片的预处理情况,采用扫描电子显微镜(SEM)观察硅基底上铜纳米粒子的生长情况和碳纤维的形貌特征,并利用能量色散谱仪(EDS)对铜纳米粒子进行成分及元素分布分析.研究表明,采用抛光-腐蚀的硅片预处理方法,可以更高效地得到具有取向性、长径比大的碳纤维.","authors":[{"authorName":"李小娇","id":"e51a77e7-2afd-4ac3-833e-e8429cc61ef2","originalAuthorName":"李小娇"},{"authorName":"郝春成","id":"86caac85-bc22-4a5a-a2c7-8c83bd67989b","originalAuthorName":"郝春成"}],"doi":"","fpage":"22","id":"f4e56440-7ac0-41ce-841b-ede39151b979","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"de49ff48-d20c-4002-b6c8-0bd2658cff13","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"e3d8defb-2c1e-4528-9ff8-74d594f439c2","keyword":"铜纳米粒子","originalKeyword":"铜纳米粒子"},{"id":"2a0f6dd4-da6e-4bd5-8e47-6885e984607a","keyword":"微波加热","originalKeyword":"微波加热"},{"id":"f299167c-dfd1-4a92-a281-14070555e9bb","keyword":"硅基底","originalKeyword":"硅基底"}],"language":"zh","publisherId":"cldb201008007","title":"硅基底上铜纳米粒子催化生长纤维的研究","volume":"24","year":"2010"},{"abstractinfo":"采用化学气相沉积工艺在炭纤维表面生长了碳纳米管,并观察了它的微观形貌,且对其影响因素进行了初步研究.结果表明:纤维表面的纵向沟槽可以负载催化剂粒子,是生长碳纳米管的物理基础;催化剂的浓度太高,金属粒子容易团聚长大,所得碳纳米管的管径较大;而催化剂浓度太低,则不能在炭纤维整个表面均匀生长碳纳米管;最佳的催化剂溶液的浓度是0.05mol/L的硝酸钴.比较了铁、钴、镍三种过渡金属催化剂,从形成的碳纳米管的质量来看,钴催化剂最佳.","authors":[{"authorName":"赵建国","id":"62bd58fc-40d6-435a-8e8f-a9e60f33554b","originalAuthorName":"赵建国"},{"authorName":"刘朗","id":"f3e2b7fa-e368-4fab-a47f-3b5d76e42515","originalAuthorName":"刘朗"},{"authorName":"郭全贵","id":"a44bcb3a-77f9-4624-a341-503a5e6fe1a1","originalAuthorName":"郭全贵"},{"authorName":"史景利","id":"2427ceda-44d2-4dc9-bf00-1ff81ac7b99f","originalAuthorName":"史景利"},{"authorName":"翟更太","id":"547e5747-18a5-4b61-ac65-0e37bce29a2a","originalAuthorName":"翟更太"},{"authorName":"宋进仁","id":"7938a29e-a0aa-444a-a1ae-1461c03a8d54","originalAuthorName":"宋进仁"}],"doi":"","fpage":"12","id":"1a9bf01d-fdf2-4642-aabb-cf43c2f845ad","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"5fe294ce-2df2-4b22-b023-fbfb92bcea4c","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"99d28505-f26e-4c67-8cf7-7aaad0110c48","keyword":"炭纤维","originalKeyword":"炭纤维"},{"id":"ff2919ae-784b-4e95-a5bf-ba06a2813094","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"}],"language":"zh","publisherId":"xxtcl200801003","title":"炭纤维表面生长碳纳米管","volume":"23","year":"2008"},{"abstractinfo":"综述了近年来国内外螺旋形炭纤维的制备方法发展现状及其最新进展,详细介绍了采用镍基、铁基、铜基等催化剂制备螺旋形炭纤维的结构、形貌等特点,评述了催化制备螺旋形炭纤维生长机理,并总结了螺旋形炭纤维的制备和生长机制存在的具体问题和应用前景.","authors":[{"authorName":"毕辉","id":"6b4d970e-849f-4fee-a0f1-356c230b971d","originalAuthorName":"毕辉"},{"authorName":"寇开昌","id":"010f40b8-6845-4448-9400-151e05821f91","originalAuthorName":"寇开昌"},{"authorName":"吴海维","id":"5bb82050-01c4-4e47-8108-7f4090c9984a","originalAuthorName":"吴海维"},{"authorName":"赵清新","id":"9e9357b4-329f-4738-bc1b-d8a72d1cf4a9","originalAuthorName":"赵清新"},{"authorName":"王志超","id":"017fc296-d158-4a52-8573-5eceda1a490a","originalAuthorName":"王志超"},{"authorName":"张教强","id":"03ab390a-bd83-445a-8a92-acbebe50a024","originalAuthorName":"张教强"}],"doi":"","fpage":"1379","id":"59a3eab8-3cd8-4e02-b47a-78d31b93a5fd","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"f41df7fe-c8d2-4fd0-a61b-d2587b32be75","keyword":"螺旋形炭纤维","originalKeyword":"螺旋形炭纤维"},{"id":"4efb86ff-be9e-4887-8572-5d56f52e6bdb","keyword":"制备","originalKeyword":"制备"},{"id":"842d9a5e-a770-46c8-91e8-d07927494f48","keyword":"生长机制","originalKeyword":"生长机制"}],"language":"zh","publisherId":"rgjtxb98200806015","title":"螺旋形炭纤维的制备方法及其生长机制","volume":"37","year":"2008"}],"totalpage":3373,"totalrecord":33730}