{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为大量利用磷石膏,本文采用在复合水泥中掺加磷石膏的方法,开展了制备低热、微膨胀复合水泥的试验研究,并采用DSC、XRD、SEM及等温水化热仪表征了该复合水泥的水化特征.研究结果表明:磷石膏具有显著的缓凝效果,通过掺加Na2SO4和提高磷石膏掺量的方法,可大幅度缩短水泥的凝结时间、提高水泥的早期强度.当磷石膏掺量超过10%时,水泥水化产物中钙矾石量显著增加,并出现二水石膏,硬化水泥浆体呈现出微膨胀性.通过调整磷石膏的掺量,可控制复合水泥的膨胀率.","authors":[{"authorName":"石正国","id":"6fe50772-8f62-4303-b3b0-287f2688ef4c","originalAuthorName":"石正国"},{"authorName":"郭辉","id":"c90a4447-f4ba-4e8f-bb69-cb35460a8c01","originalAuthorName":"郭辉"}],"doi":"","fpage":"799","id":"b2b2195a-4427-49b4-a02b-300937809619","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"95eb4e8c-11e1-4a28-9973-f58442d59fdb","keyword":"磷石膏","originalKeyword":"磷石膏"},{"id":"1cb45348-564e-4722-b01c-f4a9ff22ba27","keyword":"复合水泥","originalKeyword":"复合水泥"},{"id":"e7dfc46b-c419-497c-a85d-7d6b0853bc91","keyword":"膨胀","originalKeyword":"膨胀"},{"id":"a875fde6-c7d3-4301-a9fb-99d8e0d758e3","keyword":"水化","originalKeyword":"水化"}],"language":"zh","publisherId":"gsytb201204009","title":"利用磷石膏制备低热、微膨胀复合水泥的研究","volume":"31","year":"2012"},{"abstractinfo":"用三丁基正十四烷基氯化膦(TTPC)对蒙脱石(MMT)进行改性制备有机蒙脱石(TTPC-MMT).研究了超声波作用下反应时间、反应温度和TTPC用量等对TTPC-MMT吸油值的影响,并用傅立叶变换红外光谱(FTIR)、X射线衍射(XRD)、透射电子显微镜(TEM)和热重(TG)分析等手段对改性蒙脱石进行表征.结果表明,超声波作用能明显缩短处理时间,并提高TTPC-MMT的吸油值,在TTPC与MMT质量比为1∶5,65℃处理1h条件下, TTPC-MMT的吸油值最高.TTPC的有机链插入到蒙脱石的片层之间,层间距由原土的1.24 nm增加至2.08 nm,形成了插层型有机蒙脱石,其在260℃前的热失重仅为3.7%.","authors":[{"authorName":"祝宝东","id":"5ef8c8d2-184d-44ff-a492-c8dd39968b78","originalAuthorName":"祝宝东"},{"authorName":"张爽","id":"316ffb0d-2519-406a-85f9-e1ec870bc01a","originalAuthorName":"张爽"},{"authorName":"李月","id":"df5f95d9-e94e-4360-9928-75516506e969","originalAuthorName":"李月"},{"authorName":"臧伟鹏","id":"eed78779-d2cb-4a17-8724-e4a9f2cd786f","originalAuthorName":"臧伟鹏"},{"authorName":"王鉴","id":"816c1181-d8dd-4686-95c0-1dceed121cf3","originalAuthorName":"王鉴"}],"doi":"","fpage":"354","id":"631c78dd-7bac-4ba8-afe6-e5b85463fae4","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"ff6dfac4-9c08-402f-84f0-5b742aaa3e4a","keyword":"蒙脱石","originalKeyword":"蒙脱石"},{"id":"be40eb59-87ec-474a-b851-8c627dc8fe1e","keyword":"有机改性","originalKeyword":"有机改性"},{"id":"2b9fa700-9a32-4411-b38a-59b788703514","keyword":"吸油值","originalKeyword":"吸油值"},{"id":"1a660b6b-33f6-4dfd-a8c4-01aaf71aa91e","keyword":"插层","originalKeyword":"插层"}],"language":"zh","publisherId":"gsytb201502011","title":"三丁基正十四烷基氯化膦插层蒙脱石的制备与表征","volume":"34","year":"2015"},{"abstractinfo":"正渗透技术是一种新兴的利用渗透原理的膜分离技术,能自发进行,无需外加压力即可实现,为水资源和环境问题提供了低能耗、高效率的解决途径.近年来正渗透技术在国际上得到了广泛的重视,相关的研究正快速发展.文章详细总结了正渗透机理方面的研究进展,深入分析了正渗透的整个动力学过程,为正渗透膜的设计和制备与驱动溶质的选择和开发提供了理论基础.","authors":[{"authorName":"方彦彦","id":"417d69f7-49c9-421d-baf2-ba2e7e8e5bba","originalAuthorName":"方彦彦"},{"authorName":"田野","id":"b43f2be2-1c6d-4647-9a03-af3cbdf66e67","originalAuthorName":"田野"},{"authorName":"王晓琳","id":"eeef4e75-0c54-449f-beba-304f25c673eb","originalAuthorName":"王晓琳"}],"doi":"10.3969/j.issn.1007-8924.2011.06.020","fpage":"95","id":"b2f4f9d1-a5f6-4277-b3c5-9cc67e24d7e5","issue":"6","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"b8145eed-f9af-4296-a2a8-78081c2f117c","keyword":"正渗透","originalKeyword":"正渗透"},{"id":"a982e8b5-f58c-497f-8c8f-9a398d806a16","keyword":"渗透压","originalKeyword":"渗透压"},{"id":"f2ba5e64-b892-4b89-8447-5ff07677a854","keyword":"机理","originalKeyword":"机理"},{"id":"83082b58-1ff1-46c9-9d55-1e28d48de719","keyword":"膜","originalKeyword":"膜"}],"language":"zh","publisherId":"mkxyjs201106020","title":"正渗透的机理","volume":"31","year":"2011"},{"abstractinfo":"本文以正三酸乙酯(TEOS)和硝酸铝为原料,用溶胶-凝胶法制备了支撑和无支撑的莫来石膜.用DTA-TG、XRD:、SEM和BET等分析手段对莫来石膜的结构、形貌及孔径进行了表征,结果表明,非晶态凝胶膜在1050℃热处理后转变为莫来石膜,无支撑莫来石最可几孔径为371nm.","authors":[{"authorName":"黄永前","id":"8ab13944-9d6a-4d85-8164-a7519c8508f9","originalAuthorName":"黄永前"},{"authorName":"郑昌琼","id":"b6359b10-4d4a-44a1-92c4-f9e186285269","originalAuthorName":"郑昌琼"},{"authorName":"谢长清","id":"ce75fae0-abfd-44d4-970d-5b24bb98ea21","originalAuthorName":"谢长清"}],"categoryName":"|","doi":"","fpage":"909","id":"be48d882-6e39-4045-8e6a-2be7bfb3add4","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"95254e65-732a-4d10-bdd5-517bd2cacd5e","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"fd4ec0d0-4a6f-43df-81ad-03116d86f7cd","keyword":" mullite membrane","originalKeyword":" mullite membrane"},{"id":"dcb6e7bc-8476-4265-b90e-fee95890f62f","keyword":" structure","originalKeyword":" structure"},{"id":"13e57f9c-1d1d-42b3-9414-68e1b8682094","keyword":" preparation","originalKeyword":" preparation"}],"language":"zh","publisherId":"1000-324X_1998_6_14","title":"莫来石膜的制备和结构研究","volume":"13","year":"1998"},{"abstractinfo":"本文综述了作者所在研究集体所进行的正逆耦合循环研究.通过对串联型、并联型正逆耦合循环的相关研究和(火用)平衡比较分析,归纳提出了正逆耦合循环系统集成原则,即:正、逆循环采用同种工质;物流、能流耦合并重;优化配置热源加热过程;调控氨水工质浓度;回收利用系统内能.遵循该原则提出的变浓度氨水工质正逆耦合循环体现了优良的性能.","authors":[{"authorName":"刘猛","id":"343bc3a7-10a4-4fbb-a238-b52f64a9815e","originalAuthorName":"刘猛"},{"authorName":"张娜","id":"ecfc96ab-e8fa-4a2c-a55e-d6ecc77b31c2","originalAuthorName":"张娜"},{"authorName":"罗尘丁","id":"dce2be01-b18f-4577-a465-2d23aea270d7","originalAuthorName":"罗尘丁"}],"doi":"","fpage":"1981","id":"98b16b43-a750-4666-8688-695c6cf11385","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"bf2c7449-1574-4e78-b1cf-53ea5bf5f5b7","keyword":"正逆耦合循环","originalKeyword":"正逆耦合循环"},{"id":"c75d5df9-170f-412f-b306-d1cdbc49b9d5","keyword":"研究进展","originalKeyword":"研究进展"},{"id":"516d5302-314a-4549-a985-aec3d848dfa4","keyword":"系统集成原则","originalKeyword":"系统集成原则"},{"id":"e1a3d7b9-a5c5-4f66-ac79-fe3511e95214","keyword":"氨水工质","originalKeyword":"氨水工质"}],"language":"zh","publisherId":"gcrwlxb200912001","title":"正逆耦合循环研究进展","volume":"30","year":"2009"},{"abstractinfo":"对Dirac粒子引进了正-反粒子自由度和相应的内部τ空间的算子, 把γ矩阵分解成自旋σ算子和正-反粒子τ算子; Dirac方程的解出现了正-反粒子量子数; 正-反粒子变换是Dirac粒子的哈密顿量的反对称变换, Dirac粒子负能态能量的负值来自正-反粒子量子数的负值; γ矩阵这种分解是处理物理相互作用的需要.","authors":[{"authorName":"王顺金","id":"b047f010-780f-4c4c-8ad4-804be0f4c1a6","originalAuthorName":"王顺金"},{"authorName":"周善贵","id":"34a867fd-b1ca-4a79-9cb3-40c301a0e99b","originalAuthorName":"周善贵"},{"authorName":"H.C.Pauli","id":"3db29fe8-7400-4e3b-86d1-7f09179b551a","originalAuthorName":"H.C.Pauli"}],"doi":"10.3969/j.issn.1007-4627.2004.04.008","fpage":"294","id":"80b30226-9b34-455a-b2a9-38a83706ef28","issue":"4","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"c9c5c6f3-8b69-403f-a4c0-1c74938a8e79","keyword":"正-反粒子自由度","originalKeyword":"正-反粒子自由度"},{"id":"04749ca3-db63-4707-93e0-7c8e1a1d5b6c","keyword":"正-反粒子量子数","originalKeyword":"正-反粒子量子数"},{"id":"45c05037-0b16-4b46-b65f-ecc4fdcc9e47","keyword":"正-反粒子内部空间","originalKeyword":"正-反粒子内部空间"}],"language":"zh","publisherId":"yzhwlpl200404008","title":"Dirac粒子的正-反粒子自由度和正-反粒子量子数","volume":"21","year":"2004"},{"abstractinfo":"正渗透技术因其能耗低、水回收率高、截留能力强等优势,成为极具发展潜力的膜分离技术.然而,膜污染引起水通量持续下降,膜寿命缩短等问题严重制约了正渗透技术的发展和应用.如何有效控制膜污染已经成为正渗透技术亟需解决的问题.本综述从正渗透膜污染的角度出发,详细总结了正渗透膜的污染特征,全面介绍了抗污染正渗透膜的研究成果.通过对比众多的研究结果发现,正渗透膜的性质、膜朝向、原料液性质以及膜过程操作条件是影响正渗透膜污染形成与清除的重要因素.通过优化操作条件虽然可部分减轻膜污染,但不能彻底解决膜污染问题.开发抗污染正渗透膜仍是根治膜污染的重要解决方案.最后详细介绍了目前抗污染正渗透膜的制备方法,包括双皮层结构正渗透膜的制备及结构调控、膜表面抗污染改性、开发抗污染亲水膜材料制备正渗透膜等.其中,新型两亲性共聚物作为支撑层材料展现出良好的发展潜力,是未来抗污染正渗透膜的发展方向.","authors":[{"authorName":"王涛","id":"0423aea9-778a-4f6d-aca0-0f79894efed1","originalAuthorName":"王涛"},{"authorName":"王宁","id":"79520885-1491-476b-9d7d-d585ae615abe","originalAuthorName":"王宁"},{"authorName":"陆金仁","id":"fc983b8c-d2b6-4da8-af93-719bc5254654","originalAuthorName":"陆金仁"},{"authorName":"王志宁","id":"83fb128a-a087-44ba-a6b0-eba5bce5189e","originalAuthorName":"王志宁"},{"authorName":"胡云霞","id":"e5cf5b0b-050b-4ad1-afb7-a628f16f6a83","originalAuthorName":"胡云霞"}],"doi":"10.16159/j.cnki.issn1007-8924.2017.01.020","fpage":"125","id":"3a5d8f9f-89a8-4e66-9475-35a4995adbdd","issue":"1","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"29d51a66-2ee9-4155-ad1b-71e50da1bf2d","keyword":"正渗透","originalKeyword":"正渗透"},{"id":"a682d8ef-fe5b-4865-9877-4c13d4700e90","keyword":"膜污染","originalKeyword":"膜污染"},{"id":"40740997-4d32-480b-af23-136cbc64db78","keyword":"抗污染","originalKeyword":"抗污染"},{"id":"93350fef-cfd3-4a17-95cd-acbbfbc20da2","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"94188c80-3086-4378-a77b-e3fc7714f97e","keyword":"共聚物","originalKeyword":"共聚物"}],"language":"zh","publisherId":"mkxyjs201701020","title":"正渗透膜污染特征及抗污染正渗透膜研究进展","volume":"37","year":"2017"},{"abstractinfo":"论文研究乙醇对正庚烷氧化过程的影响.采用同步辐射方法测量当量比为1.0时正庚烷/氧气/氩气,以及正庚烷/乙醇/氧气/氩气低压层流预混火焰中主要成分的浓度.研究结果表明,添加乙醇改变了正庚烷向己烷裂解的路线,促进了庚烷直接裂解成丁烯基的趋向,但丁烷、戊烷都仍是正庚烷的主要裂解产物.添加乙醇,火焰中环已二烯、环戊二烯浓度增加,而且出现了乙烯醇、丁醇.研究结果可作为乙醇燃烧特性进一步研究的参考依据.","authors":[{"authorName":"宋金瓯","id":"47da6e35-c42c-4525-95fb-ae8d91e7fdfd","originalAuthorName":"宋金瓯"},{"authorName":"姚春德","id":"ad64dec3-ba66-464b-9946-5cbdc5e7ab5f","originalAuthorName":"姚春德"},{"authorName":"许汉君","id":"aaffde82-365f-4278-b41b-b83c14d31ce5","originalAuthorName":"许汉君"},{"authorName":"刘士钰","id":"2a5a1f53-0151-4b68-98fc-f50427fcec44","originalAuthorName":"刘士钰"}],"doi":"","fpage":"1434","id":"e3b664a6-30ca-4fdb-9ae0-f1b101e01922","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"71cd7d29-af93-4b3b-8a3f-37a241387b57","keyword":"预混火焰","originalKeyword":"预混火焰"},{"id":"31247ade-e7cc-42af-801b-bdd99a219278","keyword":"乙醇","originalKeyword":"乙醇"},{"id":"f881e7e6-72f8-4018-88a3-60779d53af65","keyword":"正庚烷","originalKeyword":"正庚烷"},{"id":"8dacc4fb-1294-4645-88de-b583158f3bb0","keyword":"同步辐射","originalKeyword":"同步辐射"}],"language":"zh","publisherId":"gcrwlxb200908050","title":"正庚烷裂解及乙醇的影响","volume":"30","year":"2009"},{"abstractinfo":"分析了我国铝土矿中一水硬铝石和铝硅酸盐脉 石矿物的晶 体结构与表面性质。 一水硬铝石与铝硅酸盐脉石矿物晶体结构的差异、 表面断裂的Al—O 和Si—O键及表面离子活性区的差别, 可影响矿物表面的润湿性与可浮性, 类质同象及各 种晶 格杂 质离子也将影响浮选剂与矿物表面的相互作用和矿物可磨性。 提出了正浮选、 反浮选铝硅 分 离的技术原型, 用溶液化学计算研究了其基本原理。 结果表明: 通过溶液化学计算可 确定 阴离子捕收剂正浮选脱硅时捕收剂, 分散剂和pH三者之间的匹配关系; 矿物的PZC与捕收 剂的pKa值是阳离子捕收剂反浮选的主要控制参数; 阴离子捕收剂反浮选时, 铅盐 和钙盐是浮选 铝硅酸盐较理想的活化剂。","authors":[{"authorName":"胡岳华","id":"683b154d-b99b-4ac1-8449-4f28a933279d","originalAuthorName":"胡岳华"},{"authorName":"蒋昊","id":"e206f479-d172-497c-81ef-39b28b5dd3f0","originalAuthorName":"蒋昊"},{"authorName":"邱冠周","id":"e27dbcf4-e960-43de-bbf8-6970d0ae6e29","originalAuthorName":"邱冠周"},{"authorName":"王淀佐","id":"b3b8f267-45bf-404e-a3b8-3785e95b2c02","originalAuthorName":"王淀佐"}],"doi":"","fpage":"125","id":"83bee37f-5955-46f3-a244-f45962bb0cb0","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"1fecd36b-c7b7-4bda-b1e0-8bb3a67e0021","keyword":"正浮选","originalKeyword":"正浮选"},{"id":"faa32a26-33ae-4d01-b3c8-dff90bca39bb","keyword":"反浮选","originalKeyword":"反浮选"},{"id":"f8e3f8ad-d6f7-4f92-9ae9-a453590f1138","keyword":"溶液化学","originalKeyword":"溶液化学"},{"id":"cf862b3a-aa30-4de4-b355-10cd7ec7ff16","keyword":"铝土矿","originalKeyword":"铝土矿"}],"language":"zh","publisherId":"zgysjsxb200101028","title":"一水硬铝石型铝土矿铝硅浮选分离的溶液化学","volume":"11","year":"2001"},{"abstractinfo":"正渗透技术作为一种新兴的膜技术以其低能耗、耐污染的特点在国际上受到越来越多的关注,并且在海水淡化、绿色能源、航空航天、食品浓缩等多个行业得到了迅速发展.综述了正渗透技术在脱盐、浓缩和能源3个不同方面的应用进展,以及国内近几年在正渗透领域所取得的一些研究进展,并展望了该领域未来的发展前景.","authors":[{"authorName":"王铎","id":"caf797d1-f909-440c-8721-00640fd7b6b1","originalAuthorName":"王铎"},{"authorName":"许春玲","id":"f363c10e-cb72-4279-b880-0fd68b26193b","originalAuthorName":"许春玲"},{"authorName":"黄燕","id":"93b6395b-ad6a-47a4-acd1-62ab82a0c33e","originalAuthorName":"黄燕"}],"doi":"","fpage":"1","id":"fab027a4-4665-4b20-8bdf-7a76c10649e6","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"77555e2e-5c7e-4a09-abf1-600b291a0437","keyword":"正渗透","originalKeyword":"正渗透"},{"id":"b671c705-b353-4369-9789-74da8c1c543c","keyword":"脱盐","originalKeyword":"脱盐"},{"id":"9cd425c9-d92c-49a2-83bb-8264a56da95f","keyword":"浓缩","originalKeyword":"浓缩"}],"language":"zh","publisherId":"cldb201305001","title":"正渗透技术的应用进展","volume":"27","year":"2013"}],"totalpage":761,"totalrecord":7604}