{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用共混法合成了聚乙二醇-介孔二氧化硅有机-无机复合材料.采用XRD、N_2吸附-脱附、SEM、TEM、红外光谱(FTIR)、DSC-TG等对聚乙二醇-介孔二氧化硅复合材料进行了表征.结果表明,聚乙二醇-介孔二氧化硅仍保持了原来的介孔结构,可以均匀地分散到介孔二氧化硅的基质中.PEG是靠氢键吸附在纳米HMS颗粒表面,两者并没有发生化学反应生成新的化合物.所合成的聚合物具有比较好的耐温性能, HMS提高了聚合物的耐热性.","authors":[{"authorName":"","id":"321c2648-f918-4ef2-9469-1d5fa05ec517","originalAuthorName":"赵娜"},{"authorName":"魏坤","id":"55209af1-610f-47b0-a920-8e125fb5d77e","originalAuthorName":"魏坤"},{"authorName":"陈晓峰","id":"bd36c085-e3cc-4933-bc2e-20de5fbb2755","originalAuthorName":"陈晓峰"},{"authorName":"李像","id":"d36db70d-6afd-4a41-bf2f-e277f43b4fd6","originalAuthorName":"李像"},{"authorName":"郭武生","id":"07fb9240-bbd9-40b4-8c53-3e5c69ed7481","originalAuthorName":"郭武生"},{"authorName":"舒丽君","id":"55d42ca5-f034-44b1-90cb-02fd7a745f1b","originalAuthorName":"舒丽君"},{"authorName":"吴远","id":"de540804-7d96-4351-86e8-b72d37e827f3","originalAuthorName":"吴远"},{"authorName":"曾晓峰","id":"0759d3cb-b263-4780-8099-5662e069d6fc","originalAuthorName":"曾晓峰"}],"doi":"","fpage":"12","id":"6d62fa66-1a07-499f-9c80-673ec308548d","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"53399145-c8e4-40e2-945a-374a6291658d","keyword":"共混法","originalKeyword":"共混法"},{"id":"7b65ccee-f33e-4b84-b2e9-f1a9f37299f2","keyword":"聚乙二醇","originalKeyword":"聚乙二醇"},{"id":"26bce6f6-bbe4-4203-9153-fbaa325d4c9c","keyword":"介孔二氧化硅","originalKeyword":"介孔二氧化硅"}],"language":"zh","publisherId":"gsytb201001003","title":"聚乙二醇-介孔二氧化硅复合材料的合成及表征","volume":"29","year":"2010"},{"abstractinfo":"采用了氢氟酸直接氟化氢氧化镧浆液的制备工艺,考察了工艺的可行性.研究了氢氟酸浓度、用量、反应温度、反应时间等因素对产物含氧量、氟化率和制备过程中过滤、洗涤的影响.通过差热分析、扫描电镜、X射线衍射等手段对产品的组成、形貌、结构等进行了研究.制备工艺为固液反应,工艺简单,产品分散性好,易过滤洗涤,质量稳定,工业可操作性强,流程短.","authors":[{"authorName":"李明来","id":"914a246d-b922-4d79-b9d7-6cb6cb26df4c","originalAuthorName":"李明来"},{"authorName":"龙志奇","id":"0a513c5b-2c5f-47dc-a782-df880106a2b6","originalAuthorName":"龙志奇"},{"authorName":"朱兆武","id":"97b1e49e-3c39-4300-9405-ecb31353c25f","originalAuthorName":"朱兆武"},{"authorName":"崔大立","id":"01ce3bbd-1320-4637-ac94-bb4b1870a08c","originalAuthorName":"崔大立"},{"authorName":"彭新林","id":"ee45c835-419b-477a-8ea5-f2b6c42f6968","originalAuthorName":"彭新林"},{"authorName":"","id":"ed6484fc-f59e-4ff0-8459-e96c76f965f0","originalAuthorName":"赵娜"},{"authorName":"崔梅生","id":"35fd0432-7c5f-4927-b5b8-5b97e1573d20","originalAuthorName":"崔梅生"},{"authorName":"黄小卫","id":"bc14038b-d4b5-454d-85c2-04a4cd1c2be7","originalAuthorName":"黄小卫"}],"doi":"10.3969/j.issn.0258-7076.2006.03.020","fpage":"348","id":"c92199fe-2034-4d82-9376-cb3d1ef16b5c","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"c1fd76ae-f12f-451f-ad84-07ac1dfa94ef","keyword":"氟化镧","originalKeyword":"氟化镧"},{"id":"6e1862f8-6786-4393-968d-e74b2a42d9b9","keyword":"氢氧化镧","originalKeyword":"氢氧化镧"},{"id":"26f03792-40d9-41bb-830b-6efd52c7ccd6","keyword":"氢氟酸","originalKeyword":"氢氟酸"},{"id":"16a2906d-b7d1-49d3-a3b0-1de6ce2611f4","keyword":"氟化反应","originalKeyword":"氟化反应"}],"language":"zh","publisherId":"xyjs200603020","title":"氢氧化镧湿法氟化法合成氟化镧工艺研究","volume":"30","year":"2006"},{"abstractinfo":"针对超细银粉制备工艺中易于团聚等现象,对离子液体介质中银粉制备工艺进行了研究。将离子液体加入到硝酸银溶液中,在不同工艺条件下进行还原,并对所制备的银粉采用X射线衍射、扫描电镜进行结构表征,利用激光粒度仪分析了所制备银粉的粒径及粒度分布。结果表明离子液体的加入量对银粉的形貌、结晶状态以及粒度分布有较大影响,在100 mL的AgNO3(0.05 mol/L),1 g PVP,10 mL离子液体,油浴温度120℃条件下制得的银粉性能最优。","authors":[{"authorName":"王火印","id":"6210b7e2-37f9-433b-8d6b-f1a7a6ae9068","originalAuthorName":"王火印"},{"authorName":"尹嘉平","id":"97347ad1-63b4-47ba-89c2-9f5ab0e1b040","originalAuthorName":"尹嘉平"},{"authorName":"","id":"f1769bc5-c50b-4a64-b6cd-26f6f4bf535a","originalAuthorName":"赵娜"},{"authorName":"段云彪","id":"703a1562-6171-4295-8862-659447165d89","originalAuthorName":"段云彪"},{"authorName":"王玉天","id":"129a90a7-dd2b-4a3f-b0a4-5078f0425266","originalAuthorName":"王玉天"},{"authorName":"张维钧","id":"adde3d08-1e3e-4b34-b151-ff362cf0788f","originalAuthorName":"张维钧"},{"authorName":"王开军","id":"856b76d8-d9b8-498a-9fd3-591d8ff9292a","originalAuthorName":"王开军"},{"authorName":"胡劲","id":"fa5e7ebb-61a3-4c36-a9c5-6db4e7f9c7af","originalAuthorName":"胡劲"}],"doi":"","fpage":"14","id":"e6040887-399d-47f6-8eac-7874c145f732","issue":"2","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"4f7df2ca-e0c3-4240-a0f0-fc6462598e6e","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"cce88d11-3949-4501-8174-40eb54f1d580","keyword":"银粉","originalKeyword":"银粉"},{"id":"bda0ad1b-76ae-4a9e-849d-c5748ca01ae2","keyword":"制备","originalKeyword":"制备"},{"id":"c01ceb19-3765-4ca0-ba30-12d47eb08d2a","keyword":"离子液体","originalKeyword":"离子液体"}],"language":"zh","publisherId":"gjs201402004","title":"利用离子液体制备银粉工艺研究","volume":"","year":"2014"},{"abstractinfo":"采用废弃蟹壳为碳源,KOH为活化剂原位制备了氮/氧共掺杂多孔炭,并研究其作为电极材料在超级电容器中的应用。固定蟹壳与KOH的质量比为5∶3,考察了煅烧温度对所得炭材料产率、孔结构和氮氧含量的影响。结果表明,蟹壳基炭材料的孔结构和氮/氧含量可通过改变煅烧温度调变。随着煅烧温度从500℃上升至700℃,多孔炭的比表面积和孔体积逐渐增大,而氮/氧含量随温度升高则降低。采用循环伏安和恒流充放电对所得材料的电化学性能进行测试。结果表明,所得多孔炭的电化学性能取决于其孔结构与氮/氧表面性质的协同作用,其中煅烧温度为600℃所得的多孔炭比表面积为612 m2/g,氮和氧含量分别为3.53%和32.8%,在50 mA/g的电流密度下比电容达到310 F/g,循环1000次比电容仍然保持95%以上,展现出良好的电化学性能。","authors":[{"authorName":"马诗瑶","id":"50ab4e0a-3816-4ef6-bd6c-56dc5e7e1cfe","originalAuthorName":"马诗瑶"},{"authorName":"杜慧","id":"ba5870df-6124-47c4-b8c1-97ee0a9bc5dc","originalAuthorName":"杜慧"},{"authorName":"耿闯","id":"15c7d51a-94f5-4f68-aa67-602ca8380f21","originalAuthorName":"耿闯"},{"authorName":"王扬","id":"6ce0e600-f761-4559-9678-25b7960c5f93","originalAuthorName":"王扬"},{"authorName":"庞琳瀚","id":"752fed7f-9b54-42c8-9182-12488316df27","originalAuthorName":"庞琳瀚"},{"authorName":"","id":"3b2d6c47-4ee9-42a4-b2c0-f06293d2a3bb","originalAuthorName":"赵娜"},{"authorName":"刘筱","id":"c692ba00-1b7f-4c6f-97cd-e271a80d3eca","originalAuthorName":"刘筱"},{"authorName":"郭永泰","id":"64457c6a-95dd-4edd-9cf3-69078bc1e700","originalAuthorName":"郭永泰"},{"authorName":"曲江英","id":"b81281c6-083f-4985-ba05-9d88f4f5e5de","originalAuthorName":"曲江英"}],"doi":"10.11944/j.issn.1000-0518.2016.11.160047","fpage":"1316","id":"9e08c3d5-1747-4f1a-98ee-c9b4e7c21474","issue":"11","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"bed627df-8f8a-4f51-9d46-b2b8fc309af4","keyword":"生物质","originalKeyword":"生物质"},{"id":"dcefe468-4f8c-4974-9d1b-ae1e76e47cf1","keyword":"孔炭","originalKeyword":"孔炭"},{"id":"a3e11cb9-0ba1-4baa-85a9-bf35b58415cb","keyword":"蟹壳","originalKeyword":"蟹壳"},{"id":"d70b62a6-7307-48eb-8eda-602367de73ef","keyword":"氮掺杂","originalKeyword":"氮掺杂"},{"id":"03565060-298f-4bc2-92b0-87c715f6419f","keyword":"超级电容器","originalKeyword":"超级电容器"}],"language":"zh","publisherId":"yyhx201611014","title":"蟹壳基氮/氧共掺杂多孔炭的原位制备及其超级电容器性能","volume":"33","year":"2016"},{"abstractinfo":"使用酶法合成了一系列不同烷基链长的β-D-烷基葡萄糖苷.结果表明,除甲基糖苷外,烷基碳链越长,反应初速度越低,糖苷的最终收率越低.从热力学角度系统地研究了这些糖苷合成的平衡常数和吉布斯自由能变化.通过改变反应的平衡,提高了长链烷基糖苷的最终收率.当水含量从10%降至5% (v/v),使用叔丁醇作为共溶剂,添加0.1 mol/L葡萄糖作为底物时,癸基糖苷的平衡得率从1.9%提高至6.1%.除了其他长链的烷基糖苷外,庚基糖苷也显示了明显的表面活性剂活性.","authors":[{"authorName":"王琴琴","id":"afd26329-983b-472b-86a8-28efa02246f0","originalAuthorName":"王琴琴"},{"authorName":"郁蕙蕾","id":"881177c0-1d0b-4e61-aaf6-97d3d045df2e","originalAuthorName":"郁蕙蕾"},{"authorName":"","id":"95ed20a1-4014-4367-8bbe-8340c53ee1e6","originalAuthorName":"赵娜"},{"authorName":"李春秀","id":"6e8f9f7f-f5a2-40e1-b96b-ecab68e356f2","originalAuthorName":"李春秀"},{"authorName":"尚亚卓","id":"1a24c0f5-aefa-4ca9-93a7-8a566e300117","originalAuthorName":"尚亚卓"},{"authorName":"刘洪来","id":"27201132-d4fc-4747-bc60-01361bf1f137","originalAuthorName":"刘洪来"},{"authorName":"许建和","id":"c38fd30e-1ca0-4ba5-b3c6-ec3fe72dc948","originalAuthorName":"许建和"}],"doi":"10.1016/S1872-2067(11)60333-1","fpage":"275","id":"5b77871b-4277-4170-9f6a-15eac5f22b98","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"c74ca907-e2bc-4dd2-9696-7c0038cb7391","keyword":"β-D-烷基葡萄糖苷","originalKeyword":"β-D-烷基葡萄糖苷"},{"id":"c8e2086f-1aec-4b40-b080-1838291b128e","keyword":"癸基-D-葡萄糖苷","originalKeyword":"癸基-D-葡萄糖苷"},{"id":"9bfa51ba-50a3-4799-984e-48560e0fbfaf","keyword":"酶催化","originalKeyword":"酶催化"},{"id":"8d898f0f-3f99-40f5-b49c-b4ae08f561aa","keyword":"逆水解","originalKeyword":"逆水解"},{"id":"afb15088-791e-4cda-8f56-7bf16d9b3a42","keyword":"微水环境","originalKeyword":"微水环境"},{"id":"4f3b8d05-c94a-49d7-bd18-b23920839d85","keyword":"平衡收率","originalKeyword":"平衡收率"}],"language":"zh","publisherId":"cuihuaxb201202009","title":"利用交联杏仁粉作为廉价而稳定的催化剂通过优化逆水解反应体系显著提高长链烷基糖苷的平衡得率","volume":"33","year":"2012"},{"abstractinfo":"合成并表征了一系列新型两亲性芳香亚胺环钯化合物.结果显示,该系列环钯催化剂可高效催化均相条件下的Heck和Suzuki偶联反应.将两亲性芳香亚胺环钯二聚体制成LB膜,其在异相条件下的催化活性是均相条件下的25倍.","authors":[{"authorName":"","id":"310d4f05-5c70-4ebb-981d-d1bb5dc57ac9","originalAuthorName":"赵娜"},{"authorName":"王飞","id":"81f03ac0-b297-4f95-af62-edb035a450c2","originalAuthorName":"王飞"},{"authorName":"周梅玲","id":"cd7058a5-8b36-4983-bf16-4a01c873aeab","originalAuthorName":"周梅玲"},{"authorName":"李铁生","id":"dbf652dc-8549-4f39-9a20-5db151e9f6c4","originalAuthorName":"李铁生"},{"authorName":"刘辉","id":"88a99eb4-ff73-4529-980e-a2f3fe8aefc1","originalAuthorName":"刘辉"},{"authorName":"许文俭","id":"00593b5a-d507-4f19-b42d-5dc374bf86f9","originalAuthorName":"许文俭"},{"authorName":"吴养洁","id":"ed7d1a9e-f0ad-45f8-b4e8-4d5d007db74f","originalAuthorName":"吴养洁"}],"doi":"10.1016/S1872-2067(12)60613-5","fpage":"1583","id":"61beca46-9e3f-4de9-ac36-0a136dc76fd5","issue":"8","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"be35c394-329b-4542-ac14-38ca1dc4dc2e","keyword":"芳香亚胺","originalKeyword":"芳香亚胺"},{"id":"709959d9-e622-4700-95eb-30f9cfc54933","keyword":"环钯催化剂","originalKeyword":"环钯催化剂"},{"id":"d5e9a56e-c041-44c8-8f43-bb2cd9623ea4","keyword":"Langmuir-Blodgett膜","originalKeyword":"Langmuir-Blodgett膜"},{"id":"8fc9c8db-5bc5-4f37-8d6e-a3f3aba50137","keyword":"Suzuki反应","originalKeyword":"Suzuki反应"},{"id":"d859dc24-b17c-4ad8-9284-107947ca9af8","keyword":"Heck反应","originalKeyword":"Heck反应"}],"language":"zh","publisherId":"cuihuaxb201308015","title":"两亲性芳香亚胺环钯化合物及其Langmuir-Blodgett膜的制备、表征及催化活性","volume":"34","year":"2013"},{"abstractinfo":"通过试验研究确定大庆油页岩灰符合火山灰质混合材要求,能与熟料掺混生产水泥.配制了不同油页岩灰掺混量的水泥样品,按照国标进行强度试验,并采用X-射线衍射仪分析了28 d胶砂试块的物相组成.结果表明:随着油页岩灰掺量的增加,水泥样品胶砂强度整体呈下降趋势,且前期下降幅度大,后期小;高掺混量时熟料中的C3A矿物含量不足,试样检测出钙矾石;油页岩灰掺量为5~10%,水泥样品强度仍能达到与熟料的相同的强度等级;掺量为15~20%,其强度亦接近熟料的强度等级;掺量在20%以上时,强度下降显著.","authors":[{"authorName":"王盘成","id":"ef2d256f-df68-4410-8438-90bf071c1f01","originalAuthorName":"王盘成"},{"authorName":"吴国光","id":"8b2f60fe-4887-4f48-b34c-7db9a183cd53","originalAuthorName":"吴国光"},{"authorName":"","id":"4e20eb10-06d6-46c7-8b3e-20b6162c8335","originalAuthorName":"赵娜"},{"authorName":"苗真勇","id":"c854ce9e-db51-4af2-8ec3-aefabf3f4da8","originalAuthorName":"苗真勇"},{"authorName":"李萍","id":"8470c83b-8220-4e86-85cd-72c7e1fb5d00","originalAuthorName":"李萍"},{"authorName":"孟献梁","id":"fd410e23-1735-4018-8943-5ea0a46c9654","originalAuthorName":"孟献梁"},{"authorName":"王志华","id":"c546af1b-d931-4ee8-80cf-c2d9c7951a3b","originalAuthorName":"王志华"}],"doi":"","fpage":"580","id":"6efed2f5-d32d-4ff9-8119-167c15dce656","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"c9ec81c2-7a3f-4f2f-9981-922fdb53a4a0","keyword":"油页岩灰","originalKeyword":"油页岩灰"},{"id":"d14bc641-0ccd-4a69-b22a-ef55c8c45e71","keyword":"火山灰质混合材","originalKeyword":"火山灰质混合材"},{"id":"dd330c7a-0ced-41f7-931f-11ed76bc48b2","keyword":"流动度","originalKeyword":"流动度"},{"id":"f3c5389b-4c77-4cef-96fe-c84d859ea051","keyword":"水灰比","originalKeyword":"水灰比"},{"id":"d3fd1719-ef0b-47d7-a177-51fc595c117a","keyword":"水泥强度","originalKeyword":"水泥强度"}],"language":"zh","publisherId":"gsytb200903036","title":"油页岩灰作水泥混合材的研究","volume":"28","year":"2009"},{"abstractinfo":"利用电导法研究了氨皂化的P507形成的微乳液体系,Ea-VH2O%关系曲线表明,溶水率VH2O%为29%时微乳体系最稳定.利用FT-IR光谱研究了P507皂化时的分子结构变化、微乳液中水的存在形式及微乳液的相变化.增溶水过程发现,P507阴阳离子先发生水化,之后形成微液滴的内相,W/O型微乳液内相增溶水阶段出现渗透现象,再加入水使得分散相联通形成双连续相微乳液,最后发生相变,形成O/W型乳浊液.","authors":[{"authorName":"彭新林","id":"1b0a9f3c-4684-4a07-8807-9cfdbb980d34","originalAuthorName":"彭新林"},{"authorName":"","id":"a4da94cf-b0bd-4807-9dab-62683017c193","originalAuthorName":"赵娜"},{"authorName":"朱兆武","id":"714ce715-210f-4418-8f13-cc3b8025ed32","originalAuthorName":"朱兆武"},{"authorName":"龙志奇","id":"59bed5ec-ca20-484f-bc20-5521c7f32147","originalAuthorName":"龙志奇"},{"authorName":"李德栋","id":"0b73503c-93ff-4173-acc8-afc57fd8042f","originalAuthorName":"李德栋"},{"authorName":"黄小卫","id":"7cc555fd-42fc-4c36-aa57-36c69b16061c","originalAuthorName":"黄小卫"},{"authorName":"李红卫","id":"f9d4e7f0-d849-4908-95c0-2d5e6801be14","originalAuthorName":"李红卫"}],"doi":"10.3969/j.issn.0258-7076.2006.04.013","fpage":"480","id":"71754014-6d50-44ef-b8f4-d36fbf6ec092","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"263887a8-1430-4771-8936-0c5486ddffee","keyword":"微乳液","originalKeyword":"微乳液"},{"id":"5f618c2d-f987-4b64-9f6c-5503282e8c20","keyword":"P507","originalKeyword":"P507"},{"id":"a41ef363-c6b2-4d5d-95b0-401a9c934423","keyword":"电导率","originalKeyword":"电导率"},{"id":"203b6456-c5e9-421f-8c54-48d8289a7eb4","keyword":"FT-IR","originalKeyword":"FT-IR"}],"language":"zh","publisherId":"xyjs200604013","title":"氨皂化的P507微乳液导电行为及FT-IR光谱研究","volume":"30","year":"2006"},{"abstractinfo":"对常减压蒸馏装置减压炉失效炉管的材质、工况、腐蚀形貌、化学成分、力学性能、金相组织以及腐蚀产物进行了全面分析与研究,结果表明,炉管管壁发生大面积腐蚀的腐蚀原因为环烷酸腐蚀;油气中含有的高温硫、硫化氢及氯化氢促进了环烷酸腐蚀;油气在炉管内的流速和流态也起到了重要作用.提出了通过选用耐腐蚀材料、控制流速与流态和添加高温缓蚀剂来减少减压炉炉管腐蚀的措施.","authors":[{"authorName":"刘兴全","id":"edf11fb8-5d20-4a0a-95fd-134742214e25","originalAuthorName":"刘兴全"},{"authorName":"刘玉英","id":"6b1da5fa-4a4e-4fce-9249-b256e3e8bb12","originalAuthorName":"刘玉英"},{"authorName":"宋天民","id":"35079992-8316-4eb5-87d6-3d48fefc9327","originalAuthorName":"宋天民"},{"authorName":"张国福","id":"2bcf7efc-0050-43d6-81d2-055668eaa2c5","originalAuthorName":"张国福"},{"authorName":"石玉","id":"7eb2c8bc-756e-45fb-8e52-13395f735941","originalAuthorName":"石玉"},{"authorName":"石秋红","id":"1c75d705-d055-4488-8059-fef36a6484bb","originalAuthorName":"石秋红"},{"authorName":"","id":"5eebedea-4bfc-4e75-99dd-fc9bfb45a3d5","originalAuthorName":"赵娜"}],"doi":"10.3969/j.issn.1001-1560.2007.10.021","fpage":"71","id":"e2d6dedb-0b17-42ff-aad5-77d8b4056f5d","issue":"10","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"1290dd00-c64c-4285-beda-1a9b60d0288f","keyword":"常减压蒸馏装置","originalKeyword":"常减压蒸馏装置"},{"id":"cb23f445-53be-4cb9-a489-1f62190d882c","keyword":"减压炉","originalKeyword":"减压炉"},{"id":"b0caccc0-b560-4687-9ac9-bac105976b42","keyword":"炉管","originalKeyword":"炉管"},{"id":"b10d3e13-81ad-4570-9baa-22d36128f116","keyword":"1Cr5Mo钢","originalKeyword":"1Cr5Mo钢"},{"id":"330a126a-458b-4830-be08-f9f2e205c211","keyword":"环烷酸腐蚀","originalKeyword":"环烷酸腐蚀"}],"language":"zh","publisherId":"clbh200710021","title":"1Cr5Mo钢炉管腐蚀原因分析与预防对策","volume":"40","year":"2007"},{"abstractinfo":"在薄膜晶体管液晶显示器件(TFT-LCD)的制作过程中,Mura 是一种常见的不良现象,它可以直接影响到产品的画面品质.本文结合生产工艺的实际情况,采用宏观微观检查设备 Macro/Micro(M/M)、扫描电子显微镜(SEM)、聚焦离子束测试仪(FIB)等设备进行检测分析,研究了产品开发过程中出现的 Sand Mura 问题.实验结果表明,Sand Mura发生的主要原因是像素电极 ITO 在刻蚀过程中由于过刻发生断裂,导致在通电时该处液晶分子偏转发生异常,进而阻挡了光的透过而形成暗点;通过变更 ITO 薄膜的厚度及刻蚀时间等一系列措施,防止了像素电极在 PVX 过孔处因过刻引起的断裂,不良发生率降至0.3%,产品质量得到了很大的提高.此外,过孔设计优化方案有助于新产品开发阶段避免该不良的发生,为以后相关问题的研究奠定了一些理论基础.","authors":[{"authorName":"史高飞","id":"347fe16c-a366-4c8f-b896-966241be7501","originalAuthorName":"史高飞"},{"authorName":"沈奇雨","id":"06dd7720-47c4-438d-b2c5-67fa9bb6ee5e","originalAuthorName":"沈奇雨"},{"authorName":"许徐飞","id":"46b9f0e7-e7a7-434c-886d-91ad7c5c5594","originalAuthorName":"许徐飞"},{"authorName":"宋洁","id":"46919f1f-e961-47a0-978b-f826300a600d","originalAuthorName":"宋洁"},{"authorName":"","id":"7dd81b5b-6cdc-420c-8f30-655f6577d22f","originalAuthorName":"赵娜"},{"authorName":"韩基挏","id":"2b24de01-4ad9-4279-9c79-ae785bdc2b85","originalAuthorName":"韩基挏"},{"authorName":"李乘揆","id":"7b8c42f1-3e70-463b-b159-9b1db8d2f7ed","originalAuthorName":"李乘揆"}],"doi":"10.3788/YJYXS20153002.0257","fpage":"257","id":"defd472c-ecb2-402b-92c5-672b47567d65","issue":"2","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"b5505bfd-5677-4c4b-933a-6e1a78e879cb","keyword":"TFT-LCD","originalKeyword":"TFT-LCD"},{"id":"83fc3e6d-f2e9-47ed-8e3a-fbc29f5b8632","keyword":"Sand Mura","originalKeyword":"Sand Mura"},{"id":"03e7f95a-a999-4bf6-bfe2-c4934f2c6c03","keyword":"过刻","originalKeyword":"过刻"},{"id":"56a59365-a0a5-417a-a172-0ff2cefea0a1","keyword":"厚度","originalKeyword":"厚度"},{"id":"eeb6aa51-dca4-4929-9f58-c793269cfa4f","keyword":"刻蚀时间","originalKeyword":"刻蚀时间"}],"language":"zh","publisherId":"yjyxs201502012","title":"TFT-LCD 制程中 Sand Mura 的失效模式分析及改善研究","volume":"","year":"2015"}],"totalpage":5,"totalrecord":43}