{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"比较了常规法、等离子体炬法和等离子体炬辅助焙烧法制得的Ni/MgO催化剂上CO2/CH4重整反应性能差异,并利用X射线衍射、透射电镜、X射线光电子能谱和CO2程序升温表面反应等技术对反应前后催化剂进行了表征,结果表明,采用等离子体炬辅助焙烧法制备的催化剂上Ni晶粒粒径小,分散度较高,低温活性和抗积炭性能较高;在常压,750℃,36 L/(h·g),n(CH4)/n(CO2)=1的反应条件下,CO2和CH4转化率分别为90.7%和89.4%,反应36 h催化剂无明显失活.","authors":[{"authorName":"覃攀","id":"2cdf4ea8-f55e-4e71-96d9-04755c93913b","originalAuthorName":"覃攀"},{"authorName":"徐慧远","id":"05194379-718a-4be3-82dc-b06f29afbc5f","originalAuthorName":"徐慧远"},{"authorName":"龙华丽","id":"56c5ebcc-dcc3-4be7-a445-5ba925b75715","originalAuthorName":"龙华丽"},{"authorName":"冉祎","id":"3fca2b42-7c6f-4fa8-b3f1-ace48fe86792","originalAuthorName":"冉祎"},{"authorName":"尚书勇","id":"abb4ef28-cdd0-451f-acb1-15ca3a5e3d57","originalAuthorName":"尚书勇"},{"authorName":"","id":"89e1218d-41a8-4782-aa07-8a410fff85cc","originalAuthorName":"储伟"},{"authorName":"印永祥","id":"fe1f67c3-7dd1-40b4-a806-146e0771673a","originalAuthorName":"印永祥"},{"authorName":"戴晓雁","id":"cb3e7fd5-4aea-4146-8a3e-e4ebfee60d22","originalAuthorName":"戴晓雁"}],"doi":"10.3724/SP.J.1088.2011.10309","fpage":"1262","id":"547758ae-334b-49ef-8658-9d919334fb25","issue":"7","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"9fba760e-283d-49c4-8c7c-7628c72243e0","keyword":"镍","originalKeyword":"镍"},{"id":"8335fd42-1766-442d-85b1-78a7fc3cb240","keyword":"氧化镁","originalKeyword":"氧化镁"},{"id":"57331d6b-f97c-49fc-ac68-4b46cc07c7d4","keyword":"二氧化碳","originalKeyword":"二氧化碳"},{"id":"01f8b178-ba8b-4891-be8a-3e02f8eca590","keyword":"甲烷","originalKeyword":"甲烷"},{"id":"8897050d-1b9b-48b5-b3ad-62e4fb7c38a1","keyword":"重整","originalKeyword":"重整"},{"id":"fd50fe56-04ab-40cd-8d2f-417115e5f284","keyword":"常压高频放电等离子体炬","originalKeyword":"常压高频放电等离子体炬"}],"language":"zh","publisherId":"cuihuaxb201107024","title":"常压高频放电等离子体炬改进制备CO2/CH4重整用Ni/MgO催化剂","volume":"32","year":"2011"},{"abstractinfo":"近年来,水滑石由于其独特的性质受到越来越多的关注。作为非均相固体催化剂,水滑石及其衍生物具有优良的催化性能,因此得到了广泛研究和应用。本文简述了水滑石的几种合成方法,重点介绍了水滑石类催化剂在催化制氢和生物炼制方面的应用,并预测了水滑石类材料在新材料合成及环境友好催化体系中的应用前景。","authors":[{"authorName":"王","id":"4152ffaf-85c8-4ac9-a674-89f615973ba3","originalAuthorName":"王伟"},{"authorName":"徐振新","id":"3b6e9900-a4b4-4fec-bbd7-ee5aa73eecbb","originalAuthorName":"徐振新"},{"authorName":"郭章龙","id":"cefdf51d-77e5-4186-a55a-c223c4863bb4","originalAuthorName":"郭章龙"},{"authorName":"江成发","id":"1e0fa159-0220-443b-90b9-db436b488fb6","originalAuthorName":"江成发"},{"authorName":"","id":"c51a46c5-b93c-4144-aae6-85e4dbd9d7fa","originalAuthorName":"储伟"}],"doi":"10.1016/S1872-2067(14)60229-1","fpage":"139","id":"0700c7ba-9be9-46cb-ae39-f7b0b6111e4a","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"bc420e47-8153-4cf4-9ed6-ca2fde9e33b7","keyword":"水滑石","originalKeyword":"水滑石"},{"id":"35cbe229-ab6c-40eb-955d-f84af382a3f9","keyword":"非均相催化剂","originalKeyword":"非均相催化剂"},{"id":"577e3c41-0446-4841-825b-57f9c27856fe","keyword":"水蒸气重整","originalKeyword":"水蒸气重整"},{"id":"7134440f-221f-45c7-bc09-89d4ee2fd089","keyword":"制氢","originalKeyword":"制氢"},{"id":"491f25b3-964d-4028-b8aa-4cab1b465777","keyword":"生物炼制","originalKeyword":"生物炼制"},{"id":"ba1f2580-2ce9-43b1-ab0e-df20551fbf4b","keyword":"酯交换反应","originalKeyword":"酯交换反应"}],"language":"zh","publisherId":"cuihuaxb201502002","title":"水滑石类催化剂催化制氢及生物炼制","volume":"","year":"2015"},{"abstractinfo":"以十六烷基三甲基溴化铵为模板剂,廉价的工业级高模数比(3.3)的硅酸钠为硅源,通过水热法合成了V-MCM-41介孔分子筛. 考察了合成条件对产物织构的影响,并采用低温氮吸附法分析探讨了介孔分子筛V-MCM-41的合成机理.结果表明,模板剂用量、pH值、加料方式、晶化温度、晶化时间、陈化时间和焙烧气氛等合成条件对介孔分子筛的制备均有影响,其中晶化温度、pH值和模板剂用量的影响最为明显.X射线衍射谱表明合成的介孔分子筛具有六方晶体结构. 红外光谱和紫外可见光谱表明V进入了介孔分子筛的骨架结构.","authors":[{"authorName":"许俊强","id":"89f829c4-550d-4834-9f30-713297866060","originalAuthorName":"许俊强"},{"authorName":"","id":"bd46782b-a6d1-498a-a5fb-3804df106e3d","originalAuthorName":"储伟"},{"authorName":"陈慕华","id":"6257e9f3-0765-4ddc-923d-1f9103ac204e","originalAuthorName":"陈慕华"},{"authorName":"罗仕忠","id":"b24acf8b-04c8-4504-8dfe-dfc16f6e4011","originalAuthorName":"罗仕忠"},{"authorName":"张涛","id":"a7a90e56-c13b-4f3b-a0c9-002ab6a9e2ce","originalAuthorName":"张涛"}],"doi":"","fpage":"671","id":"291c482d-f018-4ad9-9a85-b9d44cffb795","issue":"8","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"0ac67cd0-afd7-46d0-b158-f1bee97c64c7","keyword":"MCM-41介孔分子筛","originalKeyword":"MCM-41介孔分子筛"},{"id":"646cdf6d-00c8-458b-91c0-dc98d5e4af33","keyword":"钒","originalKeyword":"钒"},{"id":"ce5774c8-8c08-420e-bc6c-cee2d638f03c","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"d0ff60de-ef40-4f62-bfaf-bb70516bb7e2","keyword":"机理","originalKeyword":"机理"},{"id":"e20561ae-007b-44a2-80d3-5de869807afe","keyword":"表征","originalKeyword":"表征"}],"language":"zh","publisherId":"cuihuaxb200608007","title":"介孔分子筛V-MCM-41的水热法制备与合成机理","volume":"27","year":"2006"},{"abstractinfo":"以PEG 400为分散剂,采用一步柠檬酸络合法制备了LaXCoO3(X = Mg, Ca, Sr, Ce; La:X =3:2)复合催化剂。采用X射线衍射、红外光谱、扫描电镜、X射线光电子能谱、N2吸附-脱附和H2程序升温还原等技术对复合催化剂进行了表征,考察了不同元素A位取代对LaCoO3钙钛矿结构的影响,进而研究了其对乙醇水蒸气重整制氢的催化性能和稳定性。结果表明,在高含量取代时,只有Ce取代的样品能够保持单一的钙钛矿晶型; Ca或Sr取代的样品产生的Co3O4分离相有利于复合催化剂活性中心钴的还原; Sr或Ce取代的样品在反应中表现出较好的活性和稳定性, Sr取代的样品活性更高。","authors":[{"authorName":"马飞","id":"1e58df1d-4bc3-4402-9dc6-82728bb4b54d","originalAuthorName":"马飞"},{"authorName":"丁振武","id":"54c834d1-7310-4fac-83fe-ded220bfa397","originalAuthorName":"丁振武"},{"authorName":"","id":"3ae2284f-177e-44a5-80e0-4bc0978a352b","originalAuthorName":"储伟"},{"authorName":"郝世雄","id":"35b555fe-35e6-465b-a2ee-7aacf99f22c5","originalAuthorName":"郝世雄"},{"authorName":"齐涛","id":"f9550df7-13f4-4268-83e7-95282ea237ba","originalAuthorName":"齐涛"}],"doi":"10.1016/S1872-2067(14)60182-0","fpage":"1768","id":"45966f41-c904-40c0-bdd7-90ade8c427cd","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"b87bbf3b-02f5-4b10-8d7e-e3e07bdde0d9","keyword":"柠檬酸络合法","originalKeyword":"柠檬酸络合法"},{"id":"f3adbf1b-2053-4443-aca1-eae6da67c985","keyword":"钙钛矿","originalKeyword":"钙钛矿"},{"id":"afaa3096-571b-4168-8181-8cb427b5d5b6","keyword":"钴","originalKeyword":"钴"},{"id":"242b350d-878d-4593-88c9-8202d1b10299","keyword":"复合催化剂","originalKeyword":"复合催化剂"},{"id":"892f1ba5-5e7b-4012-ba8c-d955a2354d8a","keyword":"乙醇水蒸气重整","originalKeyword":"乙醇水蒸气重整"},{"id":"0ef2fa45-2750-4dbd-8c3d-05927d49e229","keyword":"氢气","originalKeyword":"氢气"}],"language":"zh","publisherId":"cuihuaxb201410021","title":"LaXCoO3(X = Mg,Ca,Sr,Ce)催化剂的制备及其催化乙醇水蒸气重整制氢","volume":"","year":"2014"},{"abstractinfo":"以柠檬酸燃烧法制备的Ni/MgO,Ni/CeO2-MgO和Ni/CeO2为催化剂,CH4为碳源,采用化学气相沉积法制备多壁碳纳米管(MWCNTs),通过N2吸附、X射线衍射、H2程序升温还原和X射线光电子能谱对催化剂进行表征,并运用热重和透射电镜表征了碳纳米管的质量和形貌.结果表明,CeO2的加入可有效地降低还原温度和增加易还原Ni物种的含量,并使电子发生转移,还原后的Ni/CeO2-MgO催化剂中,Ni晶粒尺寸较小.这表明CeO2的加入使得Ni物种的化学环境发生改变,导致它和载体间的相互作用减弱,从而促进Ni物种的还原,且还原后,高度分散在CeO2-MgO载体上,从而催化剂的催化活性增加.相比Ni/MgO催化剂,Ni/CeO2-MgO为催化剂上生长的CNTs质量更高.另外,由CeO2助Ni/MgO催化剂制备出基本没有无定形碳、结晶度好的碳纳米管.","authors":[{"authorName":"杨文","id":"1aae8253-3552-4140-9a21-94665f262802","originalAuthorName":"杨文"},{"authorName":"","id":"d0faeb4b-ea84-4374-a0ed-88403c5a5680","originalAuthorName":"储伟"},{"authorName":"江成发","id":"d45d5260-ee5c-43fd-bfc2-40031d3277b6","originalAuthorName":"江成发"},{"authorName":"文婕","id":"dbf71210-32a2-43c7-b1ee-562e5e5abd5e","originalAuthorName":"文婕"},{"authorName":"孙文晶","id":"20f1357e-df0f-4a19-b3b0-9c5d2676a281","originalAuthorName":"孙文晶"}],"doi":"10.1016/S1872-2067(10)60247-1","fpage":"1323","id":"5b0399bd-fe6e-4ce8-b47b-97070d8ea96e","issue":"8","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"8317caf5-2930-4281-aac7-2905e3619305","keyword":"镍","originalKeyword":"镍"},{"id":"56264404-e2f8-4bfe-8f1f-5f8a3f94df4e","keyword":"氧化镁","originalKeyword":"氧化镁"},{"id":"b6eed84a-28f1-4a8e-8fcb-20c16fc530f6","keyword":"二氧化铈","originalKeyword":"二氧化铈"},{"id":"7b51ef9a-b8f3-4bff-89d4-61b5c515d2e8","keyword":"化学气相沉积法","originalKeyword":"化学气相沉积法"},{"id":"a50595c8-b750-45f9-b164-fc5b0d7ed651","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"32b77aa7-8042-4157-a4ec-6bef96536110","keyword":"甲烷裂解","originalKeyword":"甲烷裂解"}],"language":"zh","publisherId":"cuihuaxb201108003","title":"CeO2助Ni/MgO催化剂用于化学气相沉积法制备多壁碳纳米管","volume":"32","year":"2011"},{"abstractinfo":"采用浸渍法制备了Ni系催化剂,并用程序升温还原和X射线衍射技术对催化剂进行了表征,用固定床微反装置考察了催化剂的催化活性. 活性考察结果表明,在Ni担载量为8%的Ni/γ -Al2O3,Ni/δ-Al2O3,Ni/θ-Al2O3和Ni/α-Al2O3四种催化剂上,甲烷部分氧化制合成气反应的活性及产物选择性存在着明显的差异. 在770 ℃下,甲烷转化率及CO和H2的选择性按Ni/γ-Al2O3<Ni/δ-Al2O3<Ni/ θ-Al2O3≈Ni/α-Al2O3顺序排列. 在相同的条件下,加入适量的CeO2 助剂后,Ni/γ-Al2O3和Ni/δ-Al2O3上的反应活性和选择性显著提高,而Ni/θ-Al2O3和Ni/α-Al2O3上的活性和选择性却变化不大. 同时, 表征结果显示,Ni易与γ-Al2O3形成镍铝尖晶石NiAl2O4,加入CeO2助剂能有效地抑制该组分的生成,而Ni/α-Al2O3样品中未发现NiAl2O4. 因此,不同Ni/ Al2O3催化剂体系上的反应活性及选择性的差异可归结为不同结构Al2O3载体的性质不同,及CeO2对抑制镍铝尖晶石生成的效果不同.","authors":[{"authorName":"余林","id":"4d357ac4-a115-4b1d-9a5a-bdff5ccf1f4e","originalAuthorName":"余林"},{"authorName":"袁书华","id":"08103c39-0908-4711-a36d-15a8c9397b34","originalAuthorName":"袁书华"},{"authorName":"田久英","id":"822e89ab-f872-4a0c-85ce-85cbacd9fccc","originalAuthorName":"田久英"},{"authorName":"王升","id":"e01a648f-38a5-4122-9b55-ceeccd59bd50","originalAuthorName":"王升"},{"authorName":"","id":"305cde9a-744d-4e96-976a-f074882db4f2","originalAuthorName":"储伟"}],"doi":"","fpage":"383","id":"5eb56036-0ab2-4b06-a267-31d767e7a789","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"f66ca57b-c0ed-41ff-894c-e971f7e5adf1","keyword":"镍","originalKeyword":"镍"},{"id":"71ed1186-7537-49b2-ac17-eca2c8717a35","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"b1cbe2e0-c758-485f-a77d-c204601def51","keyword":"负载型催化剂","originalKeyword":"负载型催化剂"},{"id":"c737012c-34cb-4f3c-a00c-ba26d15ad969","keyword":"甲烷","originalKeyword":"甲烷"},{"id":"a62ae738-2b7d-414f-a89e-e7c67962182a","keyword":"部分氧化","originalKeyword":"部分氧化"},{"id":"f96e291b-5113-4f96-864a-d779e121093b","keyword":"合成气","originalKeyword":"合成气"},{"id":"17966b09-ff8e-47fd-8c9b-4f17f72c56bd","keyword":"氧化铈","originalKeyword":"氧化铈"},{"id":"714a9a9d-aa94-446f-9fd9-ae31ee82001a","keyword":"助剂","originalKeyword":"助剂"}],"language":"zh","publisherId":"cuihuaxb200104017","title":"甲烷部分氧化制合成气载体及助剂对Ni系催化剂活性的影响","volume":"22","year":"2001"},{"abstractinfo":"利用一步柠檬酸络合法合成了钙钛矿LaCo1-xZnxO3(x=0,0.05,0.1,0.2,0.3,0.5),并将其用于乙醇水蒸气重整反应.利用X射线衍射、程序升温还原和X射线光电子能谱对催化剂进行了表征.结果表明,Zn的加入不利于形成LaCo1-xZnxO3钙钛矿结构,当x≥0.1时产生了一些分离相.新鲜LaCo0.9Zn0.1O3催化剂中意外发现存在Co3O4相,这有利于催化剂反应性能的提高.反应后的催化剂结构发生变化,形成了La2O2CO3,而该物质有利于积炭的消除和甲烷的重整.","authors":[{"authorName":"马飞","id":"6971e401-36c4-4b2a-b656-8a039b1f59fa","originalAuthorName":"马飞"},{"authorName":"","id":"3ef0d14b-f9e5-4a24-b1a9-191db9fdab07","originalAuthorName":"储伟"},{"authorName":"黄利宏","id":"1f46e5a5-e2cd-45ee-b51e-81130807a78a","originalAuthorName":"黄利宏"},{"authorName":"余晓鹏","id":"33f146f0-43c2-41a6-ab93-a8618e4b0a01","originalAuthorName":"余晓鹏"},{"authorName":"吴永永","id":"8e266c98-d81a-47c8-bd66-c8387b18b6b4","originalAuthorName":"吴永永"}],"doi":"10.1016/S1872-2067(10)60218-5","fpage":"970","id":"6eabe7ff-d462-4dcc-9bc7-464d973d04de","issue":"6","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"01083f7c-b0a5-4666-ac8d-3804fd0fda02","keyword":"一步柠檬酸络合法","originalKeyword":"一步柠檬酸络合法"},{"id":"3ea6ede4-39e3-424c-b6ee-3fcd4b9efd8b","keyword":"钙钛矿","originalKeyword":"钙钛矿"},{"id":"ac84b143-4f78-4be3-af1e-e3ca1938f778","keyword":"多样纳米核","originalKeyword":"多样纳米核"},{"id":"b6f32fe9-18ec-4a3b-a26b-484fcd3be58d","keyword":"锌","originalKeyword":"锌"},{"id":"a473dc59-725c-4be0-bcf6-8f522f434de1","keyword":"乙醇","originalKeyword":"乙醇"},{"id":"bdc748f7-bbc7-49b7-ae8e-3acb084d10c6","keyword":"蒸气重整","originalKeyword":"蒸气重整"},{"id":"d8b2d452-7f1b-4017-a9b8-72db8545c48d","keyword":"积炭","originalKeyword":"积炭"}],"language":"zh","publisherId":"cuihuaxb201106011","title":"Zn掺杂的LaCoO3钙钛矿用于乙醇水蒸气重整制氢反应","volume":"32","year":"2011"},{"abstractinfo":"采用大气压高频冷等离子体炬,对用于甲烷和CO2重整反应的Ni/γ-Al2O3催化剂进行还原. 考察了还原后催化剂的反应活性和选择性,并与常规方法还原的催化剂进行了对比. 结果表明,采用这种新方法还原催化剂只需10 min, 操作快速简便,并且还原后的催化剂的活性和选择性都明显优于常规催化剂. 在850 ℃, 原料气CH4和CO2的摩尔比为4/6的条件下反应时,可获得95.77%的甲烷转化率、75.65%的CO2转化率、100%的H2选择性和94.79%的CO选择性. 此外,该新型催化剂具有较好的稳定性,连续反应 36 h 后,活性基本不下降. XRD表征结果发现,采用该方法还原的催化剂只有金属镍和γ-Al2O3相,没有检测到NiAl2O4以及其它镍氧化物. 与常规催化剂相比,采用等离子体还原的新型催化剂具有较小的镍晶粒尺寸,金属活性组分的分散度大大提高.","authors":[{"authorName":"刘改焕","id":"ca587006-9a1c-41fe-9fde-b5c7eade0e4e","originalAuthorName":"刘改焕"},{"authorName":"","id":"535402c0-579e-488e-8f47-ee50f477f4f4","originalAuthorName":"储伟"},{"authorName":"龙华丽","id":"63b71b7c-d5e1-4637-929a-243a1b319057","originalAuthorName":"龙华丽"},{"authorName":"戴晓雁","id":"804591bb-699e-49b7-8520-5cdb29845266","originalAuthorName":"戴晓雁"},{"authorName":"印永祥","id":"807c7c29-77c8-4284-9cd6-222faff8f9cd","originalAuthorName":"印永祥"}],"doi":"","fpage":"582","id":"72e6cb62-c401-4fee-a04b-3abcb64d9be6","issue":"7","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"f26bdc35-35d3-4308-8fd2-0e65be13e461","keyword":"镍","originalKeyword":"镍"},{"id":"72323924-0e9f-4299-bb1d-eed6c9eedf46","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"8faaad05-5e81-4332-8bc3-e45524bf24ae","keyword":"负载型催化剂","originalKeyword":"负载型催化剂"},{"id":"3a296c86-a806-4415-be0c-7a11664ffa8e","keyword":"高频冷等离子体炬","originalKeyword":"高频冷等离子体炬"},{"id":"4670ebec-dbd6-40c0-a2af-0c289e96da21","keyword":"还原","originalKeyword":"还原"},{"id":"44e34015-bf91-4b12-b2fa-1032e0548a02","keyword":"甲烷","originalKeyword":"甲烷"},{"id":"94eb0fe2-b27a-42b3-8691-e93d3f6ed87f","keyword":"二氧化碳","originalKeyword":"二氧化碳"},{"id":"e13c0aad-98f9-4e9b-8f7a-a3dee011e690","keyword":"重整反应","originalKeyword":"重整反应"}],"language":"zh","publisherId":"cuihuaxb200707002","title":"用常压高频冷等离子体射流还原Ni/γ-Al2O3催化剂的新方法","volume":"28","year":"2007"},{"abstractinfo":"采用3种不同的氧化改性方法对MSC-30活性炭进行了氧化改性。结果表明,随着氧化程度逐渐加深,活性炭的比表面积(微孔孔容)逐渐降低,而表面含氧基团却逐渐增加。深度氧化有利于羧基的形成。对于单组份氮杂环化合物喹啉、吲哚和咔唑的吸附,原始活性炭对咔唑的吸附量最高,可达到1.104mmol/g。氧化后的活性炭样品保持对咔唑的吸附量,同时显著提高对喹啉和吲哚的吸附量。其中,对喹啉和吲哚的最高吸附量分别达到1.157和1.024mmol/g。活性炭对含3组分氮的模型油的吸附结果进一步表明3种氧化改性方法均提高了活性炭的吸氮量,尤其有利于碱性氮化物的吸附。","authors":[{"authorName":"文婕","id":"2a147010-7a15-4033-aca8-f94e9d8dfefd","originalAuthorName":"文婕"},{"authorName":"孙文晶","id":"dfc0299c-9cb4-4d6b-8b0f-90d385acac4f","originalAuthorName":"孙文晶"},{"authorName":"杨文","id":"3a68ddb5-98e3-441f-a024-089a7dc3d462","originalAuthorName":"杨文"},{"authorName":"王宁","id":"f80d5683-17d4-4f9f-8ce0-502e466cfa3b","originalAuthorName":"王宁"},{"authorName":"","id":"43ee74ec-cb56-433f-b9ea-86c00c93f697","originalAuthorName":"储伟"}],"doi":"","fpage":"1770","id":"90f83be3-eedc-4ea9-b1ed-b63cc8d7b6d7","issue":"13","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"221ad729-8310-4c13-afba-c89df73611b5","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"da491281-6ab1-45c4-892f-48ff90b71361","keyword":"氧化改性","originalKeyword":"氧化改性"},{"id":"932f5b17-bd26-4360-82dd-f82ec1779750","keyword":"吸附脱氮","originalKeyword":"吸附脱氮"}],"language":"zh","publisherId":"gncl201213028","title":"氧化活性炭在模型油中吸附脱氮性能研究","volume":"43","year":"2012"},{"abstractinfo":"采用等离子体技术强化制备了γ-Al2O3 担载的镍基催化剂,以CO2甲烷化为模型反应考察了等离子体引入方式对催化剂性能的影响,并采用程序升温还原和脱附、氧滴定、 N2吸附、 X射线衍射、 X射线光电子能谱和热重分析对催化剂进行了表征. 反应结果表明,经等离子体处理再还原活化的催化剂具有较高的低温催化活性,在101.325 kPa, 13 500 h-1, H2/CO=2.5和250 ℃的条件下, CO2转化率为84.6%, 比常规催化剂提高了27.2%. 表征结果表明,等离子体处理有利于前驱体在温和条件下分解形成活性相,促使催化剂的活性组分晶粒细化并在表面富集,有效提高了活性组分的分散度,从而提高了催化剂的催化活性.","authors":[{"authorName":"郭芳","id":"16df3b48-0fa8-4b97-a954-c4dfbb6f5071","originalAuthorName":"郭芳"},{"authorName":"","id":"f26eb3a8-a088-4f75-97c4-9e09348d3c0c","originalAuthorName":"储伟"},{"authorName":"徐慧远","id":"52d59ca9-f4d5-4dbd-836e-e21e74392e9d","originalAuthorName":"徐慧远"},{"authorName":"张涛","id":"7b7a531d-fc91-46e9-8c7f-059797048ea5","originalAuthorName":"张涛"}],"doi":"","fpage":"429","id":"a5c02fe7-7bcd-432b-b86e-a21860855d1d","issue":"5","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"cc2603e0-da64-4c56-b1fe-145bd08fb4bc","keyword":"等离子体","originalKeyword":"等离子体"},{"id":"eb456610-b559-4a08-af36-e38375b831b5","keyword":"镍","originalKeyword":"镍"},{"id":"f6222796-a545-45a9-a54e-95a94ba322b8","keyword":"氧化镧","originalKeyword":"氧化镧"},{"id":"10a4f3f0-00f6-4120-a2ad-d5b1901a5857","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"d00d7e67-b74d-433e-b1eb-ed2327f8f4d1","keyword":"二氧化碳","originalKeyword":"二氧化碳"},{"id":"05c59e63-4e21-4ade-8c7a-6717c0bd6dd5","keyword":"甲烷化","originalKeyword":"甲烷化"}],"language":"zh","publisherId":"cuihuaxb200705011","title":"采用等离子体强化制备CO2甲烷化用镍基催化剂","volume":"28","year":"2007"}],"totalpage":171,"totalrecord":1702}