欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(7)
  • 图书()
  • 专利()
  • 新闻()

乙酸在SmO x/Rh(100)模型表面上的吸附和分解

马运生 , 姜志全 , 周维平 , 谭大力 , 翟润生 , 包信和 , 庄叔贤

催化学报

用高分辨电子能量损失谱(HREELS)和热脱附谱(TDS)研究了乙酸在SmO x/Rh(100)模型表面上的吸附与分解. 结果表明: 低温下吸附乙酸时,SmO x的加入明显促进了乙酸分子中O-H键的断裂,从而有利于乙酸根的形成; 升高表面温度,SmO x的存在促进了乙酸根中C-C键的断裂,有利于乙酸根的进一步分解. 120 K时,乙酸在SmO x/Rh(100)上主要以乙酸根的形式存在. 225 K时,乙酸根即可发生以生成CO为主的脱羧反应. 在417和477 K观察到受表面脱羧反应控制的CO2和H2的脱附峰. 对反应的机理进行了讨论.

关键词: 乙酸 , 氧化钐 , , 模型表面 , 热脱附谱 , 高分辨电子能量损失谱

乙酸在Rh(100)表面吸附和分解的HREELS和TDS研究

周维平 , 姜志全 , 马运生 , 庄叔贤 , 翟润生 , 包信和

催化学报

用高分辨电子能量损失谱(HREELS)和热脱附谱(TDS)研究了乙酸在Rh(100)表面上的吸附和分解,提出了乙酸吸附和分解反应的模式.130K时,高暴露量的乙酸在Rh(100)表面上形成多层吸附的凝聚态乙酸.升温至290 K时,部分乙酸以分子形式直接脱附,另一部分乙酸分子通过O-H键断裂形成乙酸根和氢吸附在表面上;在升温至400 K的过程中,乙酸根在表面发生两个相互竞争的反应,即乙酸根分解成CO,CHx,O和H,以及乙酸根分解成CHx,H和CO2;升温至500 K,只剩下CHx,O和CO吸附在表面上;600 K后,表面吸附的CHx完全解离,同时表面吸附的碳原子和氧原子结合成CO脱附.

关键词: , 表面 , 乙酸 , 吸附 , 高分辨电子能量损失谱 , 热脱附谱

预吸附氧对NO在Pt(110)表面吸附和分解的影响

李金兵 , 黄伟新 , 姜志全 , 包信和

催化学报

利用程序升温反应谱、X射线光电子能谱和高分辨电子能量损失谱研究了NO在清洁和预吸附氧的Pt(110)表面的吸附和分解. 在清洁的Pt(110)表面,室温下低覆盖度时NO以桥式吸附为主,高覆盖度时NO以线式吸附为主. 加热过程中部分NO(主要是桥式吸附物种)分解,生成N2和N2O. 室温下O2在Pt(110)表面发生解离吸附. Pt(110)表面预吸附氧会抑制桥式吸附NO的生成,并导致其脱附温度降低40 K. 降低脱附温度有利于桥式吸附NO的分子脱附,从而抑制分解反应. 这些结果从表面化学的角度合理地解释了铂催化剂在富氧条件下对NO分解能力的降低.

关键词: 氧化氮 , , , 吸附 , 分解 , 表面化学

利用多孔阳极氧化铝研究载体孔洞尺寸对负载银粒子团聚的影响

赵红 , 姜志全 , 张镇 , 翟润生 , 包信和

催化学报

利用阳极氧化方法制备了具有规整的可控孔洞尺寸的多孔Al2O3 膜,并以此模拟实际的催化剂载体制备了负载银催化剂. 采用扫描电镜、能量分散谱、透射电镜、X射线衍射和X射线光电子能谱等手段,研究了多孔阳极氧化铝的孔洞大小对负载的银粒子团聚的影响. 结果表明,载体孔洞尺寸对银粒子团聚可能起到限制作用,而且这种限制作用随载体孔洞尺寸增大而减小. 当载体的孔洞尺寸约为50 nm时,随温度升高银粒子的团聚和生长都不明显;当载体的孔洞尺寸约为200 nm时,随温度升高银粒子发生一定程度的团聚和生长,但孔洞尺寸的限制作用仍存在. 这种载体尺寸的限制作用可以有效地阻止催化剂活性组分的团聚.

关键词: 阳极氧化铝 , , 团聚 , 乙烯 , 环氧化

氧化铝薄膜表面羰基钼物种的可逆再生

姜志全 , 赵红 , 谭大力 , 翟润生 , 包信和

催化学报

通过Mo(CO)6的热分解制备了Al2O3薄膜负载的金属钼模型催化剂,并采用热脱附谱(TDS)和X射线光电子能谱(XPS)原位研究了CO在金属态Mo/Al2O3模型催化剂表面的化学吸附.结果表明,在低温下CO可与Al2O3表面的金属钼纳米粒子发生多重配位形成类似于羰基钼的物种.CO在Mo/Al2O3模型催化剂表面的吸附导致Mo 3d XPS峰向高结合能方向位移,所生成的羰基钼物种表现为TDS谱中在240 K处有脱附峰.负载的金属钼模型表面与体相金属钼的化学性质完全不同,表现出明显的粒子尺寸效应.

关键词: 热脱附谱 , X射线光电子能谱 , 羰基钼 , 氧化铝薄膜 , 可逆再生

CexTi1-xO2复合氧化物表面结构和体相结构的演变

方钧 , 石富城 , 包蕙质 , 千坤 , 姜志全 , 黄伟新

催化学报 doi:10.1016/S1872-2067(12)60667-6

利用X射线衍射、N2吸附等温线、X射线光电子能谱、X射线吸收谱、H2-程序升温还原、甲基橙选择化学吸附和等电点测定等方法研究了共沉淀方法制备的一系列CexTi1-xO2复合氧化物的结构.成功发展了甲基橙选择化学吸附和等电点方法研究CexTi1-xO2复合氧化物的最外层表面结构,并定义了“等价CeO2表面覆盖度”来描述CexTi1-xO2复合氧化物的最外层表面结构.CexTi1-xO2复合氧化物(x≥ 0.7)形成立方萤石相固溶体,Ce0.3Ti0.7O2表现出纯的单斜相,而其它复合氧化物表现出混合相.Cex-Ti 1-xO2复合氧化物最外层表面结构的演变行为不同于其体相结构.Ce0.7Ti0.3O2立方萤石相固溶体最外层表面已经部分形成了单斜相Ce0.3Ti0.7O2,随Ce含量的降低,单斜相Ce0.3Ti0.7O2从最外层表面向体相生长.CexTi1-xO2复合氧化物立方萤石相固溶体和单斜相Ce0.3Ti0.7O2分别在相对较低和较高的温度表现出好的还原性能.上述结果提供了全面和深层次的CexTi1-xO2复合氧化物结构信息.

关键词: 二氧化钛 , 氧化铈 , 复合氧化物 , 相结构 , 表面结构 , X射线吸收谱 , 选择化学吸附 , 等电点

甲酸在Au(997)台阶表面的氧化反应

邬宗芳 , 姜志全 , 金岳康 , 熊锋 , 孙光辉 , 黄伟新

催化学报 doi:10.1016/S1872-2067(16)62467-1

金催化是纳米催化的代表性体系之一,但对金催化作用的理解还存在争议,特别是金颗粒尺寸对其催化作用的影响.金颗粒尺寸减小导致的表面结构主要变化之一是表面配位不饱和金原子密度的增加,因此研究金原子配位结构对其催化作用的影响对于理解金催化作用尺寸依赖性具有重要意义.具有不同配位结构的金颗粒表面可以利用金台阶单晶表面来模拟.我们研究组以同时具有Au(111)平台和Au(111)台阶的Au(997)台阶表面为模型表面,发现Au(111)台阶原子在CO氧化、NO氧化和NO分解反应中表现出与Au(111)平台原子不同的催化性能.负载型Au颗粒催化甲酸氧化反应是重要的Au催化反应之一.本文利用程序升温脱附/反应谱(TDS/TPRS)和X射线光电子能谱(XPS)研究了甲酸在清洁的和原子氧覆盖的Au(997)表面的吸附和氧化反应,观察到Au(111)台阶原子和Au(111)平台原子不同的催化甲酸根氧化反应行为.与甲酸根强相互作用的Au(111)台阶原子表现出比与甲酸根弱相互作用的Au(111)平台原子更高的催化甲酸根与原子氧发生氧化反应的反应活化能.在清洁Au(997)表面,甲酸分子发生可逆的分子吸附和脱附.甲酸分子在Au(111)台阶原子的吸附强于在Au(111)平台原子的吸附. TDS结果表明,吸附在Au(111)台阶原子的甲酸分子的脱附温度在190 K,吸附在Au(111)平台原子的甲酸分子的
  脱附温度在170 K. XPS结果表明,分子吸附甲酸的C 1s和O 1s结合能分别位于289.1和532.8 eV.利用多层NO2的分解反应在Au(997)表面控制制备具有不同原子氧吸附位和覆盖度的原子氧覆盖Au(997)表面,包括氧原子吸附在(111)台阶位的0.02 ML-O(a)/Au(997)、氧原子同时吸附在(111)台阶位和(111)平台位的0.12 ML-O(a)/Au(997)、氧原子和氧岛吸附在(111)平台位和氧原子吸附在(111)台阶位的0.26 ML-O(a)/Au(997). TPRS和XPS结果表明,甲酸分子在105 K与Au(997)表面原子氧物种反应生成甲酸根和羟基物种,但甲酸根物种的进一步氧化反应依赖于Au原子配位结构和各种表面物种的相对覆盖度.在0.02 ML-O(a)/Au(997)表面暴露0.5 L甲酸时, Au(111)台阶位氧原子完全反应,甲酸过量.表面物种是Au(111)台阶位吸附的甲酸根、羟基和甲酸分子.在加热过程中,甲酸分子与羟基在181 K反应生成甲酸根和气相水分子(HCOOH(a)+ OH(a)= H2O + HCOO(a)),甲酸根在340 K发生歧化反应生成气相HCOOH和CO2分子(2HCOO(a)= CO2+ HCOOH).在0.12 ML-O(a)/Au(997)和0.26 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,甲酸分子完全反应,原子氧过量.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基和原子氧.在加热过程中, Au(111)平台位和Au(111)台阶位的甲酸根分别在309和340 K同时发生氧化反应(HCOO(a)+ O(a)= H2O + CO2)和歧化反应(2HCOO(a)= CO2+ HCOOH)生成气相CO2, H2O和HCOOH分子.在0.26 ML-O(a)/Au(997)表面暴露10 L甲酸时,甲酸分子和原子氧均未完全消耗.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基、甲酸分子和原子氧.在加热过程中,除了上述甲酸根的氧化反应和歧化反应,还发生171 K的甲酸分子与羟基的反应(HCOOH(a)+ OH(a)= H2O + HCOO(a))和216 K的羟基并和反应(OH(a)+ OH(a)= H2O + O(a)).

关键词: 金催化 , 表面化学 , 模型催化剂 , 几何结构 , 配位数

出版年份

刊物分类

相关作者

相关热词