{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为制备性能优良的Al2 O3/430L复合型蜂窝载体材料,本文以430L不锈钢合金粉末、Al2 O3粉末、粘结剂为原料,采用粉末增塑挤压技术挤压成形,并在1100℃真空中烧结2 h获得Al2 O3/430L复合型蜂窝材料.借助SEM、XRD及万能试验机,研究了添加Al2 O3对Al2 O3/430L复合型蜂窝材料的组织与性能的影响.研究表明:金属粉末颗粒在烧结过程中结合形成的基体组织为α-Fe(Cr),在基体晶粒间孔隙处和表面弥散分布着Al2 O3颗粒.添加少量的Al2 O3可提高烧结密度,制件表面光滑.随着Al2 O3添加量增加,蜂窝材料表面负载催化涂层的能力增强;抗压强度随Al2 O3添加量的增加先升高后降低,在Al2O3含量为2.5wt.%时,最大抗压强度达27 MPa.添加2.5wt.%Al2O3所制备的Al2O3/430L复合型蜂窝材料力学性能最佳、表面负载催化涂层的能力优良.","authors":[{"authorName":"杨一群","id":"c66c782b-5438-4215-b6fc-4ebf533d4ff6","originalAuthorName":"杨一群"},{"authorName":"李和汀","id":"80d59c43-e50e-46fa-a4be-2cde1c13cc0b","originalAuthorName":"李和汀"},{"authorName":"孙亚东","id":"8fa116c1-44ca-47ed-8ac5-faef9ae37538","originalAuthorName":"孙亚东"},{"authorName":"","id":"a2d53915-1256-4ca9-ae7f-f92431afa3bc","originalAuthorName":"周芸"},{"authorName":"左孝青","id":"32fac2d3-9dd3-48ee-a4bc-54b6178d6689","originalAuthorName":"左孝青"},{"authorName":"桓源峰","id":"57d7264a-f0ee-420c-9700-f24c1c588a41","originalAuthorName":"桓源峰"},{"authorName":"刘沁曦","id":"f8e47880-8d6b-46a3-9588-11517d1fd291","originalAuthorName":"刘沁曦"}],"doi":"10.11951/j.issn.1005-0299.20160389","fpage":"19","id":"55fb0b0f-24e4-427e-91f0-4bd53c3cc86f","issue":"3","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"1a0acf51-ae66-41cd-aacb-5f37b7571bb6","keyword":"Al2O3/430L","originalKeyword":"Al2O3/430L"},{"id":"6c72d3e2-e038-4501-bafd-a6b3d08b19fb","keyword":"金属蜂窝","originalKeyword":"金属蜂窝"},{"id":"8ffa2c4a-bf83-4b22-bf60-4083124a6aa2","keyword":"粉末增塑挤压","originalKeyword":"粉末增塑挤压"},{"id":"68afe228-6d13-4ed3-8c94-8821a2093fd0","keyword":"载体材料","originalKeyword":"载体材料"},{"id":"bad63b80-7c38-4dfd-9ba2-3b44efe4d4df","keyword":"430L不锈钢","originalKeyword":"430L不锈钢"}],"language":"zh","publisherId":"clkxygy201703003","title":"粉末增塑挤压制备Al2O3/430L复合型蜂窝材料的组织与性能","volume":"25","year":"2017"},{"abstractinfo":"在热传计算的基础上,采用锌粒子为前驱体、铝熔体为渗流体,通过氩气渗流制备通孔泡沫铝:对泡沫铝的制备、压缩性能及锌残余量进行研究.结果表明:滑石粉隔热层厚度与渗流时间之间的关系为x2=7.35×10-8τ;优化的渗流工艺如下:渗流温度740℃、锌粒子预热温度220℃、锌粒子直径3 mm;平均孔径为3 mm的泡沫铝的屈服强度随孔隙率的增加而减小;孔隙率为63%和67%的泡沫铝的屈服强度都随孔径的增大而提高;泡沫铝孔隙率从60%提高到71%,锌残余量从11.3%降低到4.5%.","authors":[{"authorName":"张斌","id":"75e750bc-0a1a-43e4-9c4f-a4e6dc95e1c1","originalAuthorName":"张斌"},{"authorName":"左孝青","id":"5dc43008-4ace-4cf3-87ed-08dffb208432","originalAuthorName":"左孝青"},{"authorName":"孙彦琳","id":"f4b5ba90-8943-4f38-812f-301e98a31d04","originalAuthorName":"孙彦琳"},{"authorName":"陆建生","id":"d05611b2-dd09-463b-ba05-34e2f6f18fc4","originalAuthorName":"陆建生"},{"authorName":"","id":"f756c091-f2fc-4f2b-b08f-d7070ce2ebbb","originalAuthorName":"周芸"},{"authorName":"王红","id":"e8ac53c5-8c52-4f9f-81c0-63b398020da8","originalAuthorName":"王红"}],"doi":"","fpage":"597","id":"0164caf3-aa51-4789-96b4-427560bb27cc","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"25b45805-3278-45dc-b304-4c3705abaf06","keyword":"泡沫铝","originalKeyword":"泡沫铝"},{"id":"68984bb0-3bad-4daf-8008-4f68038269c2","keyword":"渗流","originalKeyword":"渗流"},{"id":"3338053d-bb4c-4806-956a-8696a8c24257","keyword":"热传导","originalKeyword":"热传导"},{"id":"cf649cc7-6259-407f-af0f-012735cbc57a","keyword":"制备","originalKeyword":"制备"},{"id":"34a0c181-4b5a-4030-bc7e-af4613c806c6","keyword":"压缩性能","originalKeyword":"压缩性能"}],"language":"zh","publisherId":"zgysjsxb201103016","title":"泡沫铝的新型渗流法制备及其压缩性能","volume":"21","year":"2011"},{"abstractinfo":"研究铜对ZA12合金组织结构的作用,探讨铜对合金摩擦磨损性能的影响.随着铜添加量的变化,摩擦磨损性能有显著的改变.","authors":[{"authorName":"","id":"f37c1359-f65b-4ed2-b6b0-d02c877d2003","originalAuthorName":"周芸"},{"authorName":"孙勇","id":"ca0f0120-ea2d-4c65-a68a-422b85a9278b","originalAuthorName":"孙勇"},{"authorName":"兆","id":"1822caa5-8c00-4df9-83b8-d82727d794e1","originalAuthorName":"周兆"},{"authorName":"刘诗凯","id":"37b94996-287a-4925-b148-1eb3ffcae916","originalAuthorName":"刘诗凯"}],"doi":"10.3969/j.issn.0258-7076.1999.02.016","fpage":"150","id":"017fa1ae-b428-49db-9a7b-08619ba29058","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"c8bd2306-06b2-4c1c-88eb-70fece0f6e54","keyword":"锌基合金","originalKeyword":"锌基合金"},{"id":"4beff7dd-7393-45f5-b670-9a9311007cd5","keyword":"摩擦磨损性能","originalKeyword":"摩擦磨损性能"}],"language":"zh","publisherId":"xyjs199902016","title":"添加铜对ZA12合金摩擦磨损性能的影响","volume":"","year":"1999"},{"abstractinfo":"在普通Cr-Mo-B系低合金耐磨钢成分基础上,通过添加适量的钒、氮元素,研究钒氮微合金化对轧后直接淬火(DQ)+低温回火耐磨钢板组织及性能的影响。结果表明:无钒氮钢板的微观组织为板条马氏体组织,-20℃冲击功为15 J,布氏硬度为443HBW。分别添加质量分数0.088%V-0.013%N和0.089%V-0.029%N的2种钒氮微合金化的钢板,板条马氏体组织明显细化,在组织中发现存在少量针状铁素体组织。2种钢板的-20℃冲击功分别提高至30和42 J,质量分数0.089%V-0.029%N的钢板强度、硬度与无钒氮钢板基本一致。低温轧制过程中析出的V(C,N)颗粒起到定扎奥氏体晶界、抑制晶粒长大作用。在860℃温度终轧及轧后弛豫过程中析出的V(N,C)粒子可以促进针状铁素体形成,它们起到分割奥氏体晶粒、细化马氏体板条束的作用。含质量分数0.089%V-0.029%N的耐磨钢板的综合性能最好。","authors":[{"authorName":"胡筱旋","id":"ce2ab614-3dde-49d2-96c7-f223046c82e8","originalAuthorName":"胡筱旋"},{"authorName":"王瑞珍","id":"bf6a2ba8-9732-4b3d-aa3d-77395b629e06","originalAuthorName":"王瑞珍"},{"authorName":"","id":"1d621b6c-cfa4-4c00-9c90-2a6521380680","originalAuthorName":"周芸"},{"authorName":"苏航","id":"c4d352c7-e5cf-416f-81a1-ca26bb8206cf","originalAuthorName":"苏航"}],"doi":"10.13228/j.boyuan.issn0449-749x.20130721","fpage":"89","id":"0843d677-7540-4028-bb07-7444394723de","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"59ad0aa2-cbb9-4563-9e58-cb1266ceb2ba","keyword":"低合金耐磨钢","originalKeyword":"低合金耐磨钢"},{"id":"ac806df5-fcd2-4db7-bd07-ffb0eb338cce","keyword":"钒氮微合金化","originalKeyword":"钒氮微合金化"},{"id":"e2a1df63-79a6-457b-948f-d5565ddd1094","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"49f03e59-a52a-4c3c-88b1-2c2208a28e30","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gt201410017","title":"钒,氮含量对耐磨钢NM400组织及性能的影响","volume":"","year":"2014"},{"abstractinfo":"以纯铁粉、铬粉、铝粉为原料,采用粉体增塑挤压-烧结工艺制备Fe-25Cr-5Al金属蜂窝,研究不同的烧结温度和时间条件下烧结蜂窝的收缩率、表观密度和组织结构特征.研究表明,随烧结温度的升高,蜂窝的收缩率和表观密度增大,径向收缩率的范围为5.6%~12.3%,表观密度的范围为0.98~1.09g/cm3.在1250℃烧结时,随烧结时间的延长,蜂窝的收缩率和表观密度也随之增大,径向收缩率的范围为6.5%~12.1%,表观密度的范围为0.85~1.02g/cm3.烧结组织为Fe-Cr固溶体(α-Fe)基体,少量Fe-Al,Cr-Al间化合物及Cr2O3,Al2O3.","authors":[{"authorName":"","id":"502d2c33-ff35-4f69-970d-7b4c15037398","originalAuthorName":"周芸"},{"authorName":"左孝青","id":"f37842ce-72ab-4914-967d-75c541a4ada9","originalAuthorName":"左孝青"},{"authorName":"梅俊","id":"7a5c49ea-086d-448d-a88c-3c24064ea7a7","originalAuthorName":"梅俊"},{"authorName":"张喜秋","id":"09cb7a91-23d2-41d3-97c9-83814cb3a318","originalAuthorName":"张喜秋"},{"authorName":"孙加林","id":"5ce87009-77f8-4e18-b009-8f7a991123c4","originalAuthorName":"孙加林"}],"doi":"10.3969/j.issn.1001-4381.2006.03.002","fpage":"6","id":"0f13ada0-446e-4642-95c8-641201ba4317","issue":"3","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"4327feaa-8be0-4d36-a0a5-7db2bba305eb","keyword":"Fe-Cr-Al","originalKeyword":"Fe-Cr-Al"},{"id":"254348a5-297c-4305-bf41-8826cdea6b77","keyword":"金属蜂窝","originalKeyword":"金属蜂窝"},{"id":"622b68d4-8d35-4b77-aadb-9bc02c24923d","keyword":"收缩率","originalKeyword":"收缩率"},{"id":"40a1b0c0-65f5-4a86-b884-b13b20b10bf4","keyword":"表观密度","originalKeyword":"表观密度"}],"language":"zh","publisherId":"clgc200603002","title":"挤压Fe-25Cr-5Al金属蜂窝的烧结和组织结构研究","volume":"","year":"2006"},{"abstractinfo":"以金属粉末、粘结剂为原料,经炼料制成膏状挤压料,通过挤压模成型为蜂窝状,再经高温烧结制备成316L不锈钢蜂窝。研究了烧结气氛、烧结温度对蜂窝烧结组织结构的影响,并对烧结后的蜂窝进行力学性能测试。结果表明,在氢气中烧结的316L蜂窝组织,金属颗粒间形成烧结颈,呈网状连接在一起,并随温度升高颗粒合并长大成晶粒,基体组织为Fe-Cr-Ni-C(γ-Fe)固溶体,第二相球形颗粒为富含硅的低熔点化合物;在真空中烧结,金属颗粒表面形成氧化物Fe2 Cr4 O4、Cr2 O3,以及SiO2,大量的表面氧化物阻碍了金属粉末颗粒的结合,直接影响烧结蜂窝的强度,致使烧结蜂窝强度远低于氢气中烧结的蜂窝。在氢气中烧结的316L金属蜂窝,其径向抗压强度可达40~50 MPa,远高于目前广泛应用的陶瓷蜂窝载体,是作为载体材料的一种理想选择。","authors":[{"authorName":"余娇","id":"871cec74-17d0-4b18-a2fd-f7233ca09d06","originalAuthorName":"余娇"},{"authorName":"杜玉洁","id":"bce4bc6a-6ddf-4d1a-916e-59c3fbf3a79e","originalAuthorName":"杜玉洁"},{"authorName":"钟浩","id":"4a4af952-88af-4b26-b8fa-ed8d5728dd8e","originalAuthorName":"钟浩"},{"authorName":"","id":"cd88cf70-070a-4106-b2c5-ffb5ec8be1d2","originalAuthorName":"周芸"},{"authorName":"左孝青","id":"ab7abd62-f39d-4528-a486-c6305ee07604","originalAuthorName":"左孝青"}],"doi":"","fpage":"81","id":"1976ac0e-e02b-4bdb-8c3e-b500bf2a84c8","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"8498abb4-44c9-4698-aae5-075ea0aa27bf","keyword":"316L不锈钢","originalKeyword":"316L不锈钢"},{"id":"4e138297-1041-44d4-892e-627c6895b8a1","keyword":"金属蜂窝","originalKeyword":"金属蜂窝"},{"id":"983ad19b-0dca-4858-9023-0d88299055ab","keyword":"挤压","originalKeyword":"挤压"},{"id":"bd130001-78d6-45e5-abdd-2e4a26abf9f8","keyword":"烧结","originalKeyword":"烧结"},{"id":"148adbaf-c52b-4134-bc19-f8a7044ff433","keyword":"载体材料","originalKeyword":"载体材料"}],"language":"zh","publisherId":"clkxygy201404014","title":"挤压316 L金属蜂窝的烧结及其组织性能研究","volume":"","year":"2014"},{"abstractinfo":"采用显微组织分析和力学性能测试等方法研究了NF709R钢在700℃长时(10 000 h)时效后的显微组织和力学性能的变化。结果表明:在700℃时效过程中,钢中析出相主要有M23C6、MX和Z相;在4~3 400 h过程中,晶内细小的MX相、Z相和晶界处M23C6相的共同作用使钢的高温屈服强度逐渐升高;3 400~6 000 h过程中生成的M23C6碳化物疏松,晶界强度降低,使钢的高温屈服强度降低;6 000~10 000 h过程中,各种析出相变化不大,高温屈服强度缓慢下降;时效态室温塑性和韧性下降是由于M23C6相在晶界上长大、聚集成链状,使晶界变宽所致。","authors":[{"authorName":"王斌","id":"1a0e4d12-712f-4514-8284-780849c53ec0","originalAuthorName":"王斌"},{"authorName":"程世长","id":"b1d1b159-5f3b-4174-8f8b-670610efab31","originalAuthorName":"程世长"},{"authorName":"","id":"c0a0357b-5809-4c05-a43a-bd5866c23dd3","originalAuthorName":"周芸"},{"authorName":"王敬忠","id":"1dc94d54-8a2c-4748-ac62-a2e4441881a2","originalAuthorName":"王敬忠"},{"authorName":"包汉生","id":"8f615e35-c0a7-4965-aff2-aed41d87eccd","originalAuthorName":"包汉生"},{"authorName":"刘正东","id":"a9a8a290-8ace-4cc0-bb9d-a5f319c8469d","originalAuthorName":"刘正东"}],"doi":"","fpage":"72","id":"2d24307d-29c7-458d-8aba-b8eec5a4c650","issue":"5","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"f37fda5b-ce4a-4ff3-bd73-573b37bb3162","keyword":"NF709R耐热钢","originalKeyword":"NF709R耐热钢"},{"id":"e40f105c-9cf4-47e4-a649-c53b03868249","keyword":"高温时效","originalKeyword":"高温时效"},{"id":"49e5c485-fe3d-453c-9035-622a68c3461e","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"b2fb9283-5e91-4368-8d81-186104be2cd0","keyword":"析出相","originalKeyword":"析出相"}],"language":"zh","publisherId":"jxgccl201105020","title":"NF709R耐热钢高温长时时效后的组织和性能","volume":"35","year":"2011"},{"abstractinfo":"在常规熔体发泡法的基础上,采用加入0.5%(质量分数)Mg、添加1%形核剂和发泡剂,经(400℃,6 h)+(475℃,1 h)氧化预处理、搅拌发泡50 s等措施,制备出平均孔径1.03 mm、孔隙率75%、结构均匀的小孔径Al-9Si泡沫.孔径细化机理分析表明,Mg的作用在于降低铝熔体的表面张力,提高气泡稳定性;形核剂的作用在于增加气泡非均匀形核的核心;发泡剂氧化预处理可以推迟和延缓发泡剂的分解,提高发泡剂的分散均匀性;搅拌发泡的作用是在发泡剂剧烈分解的中段,通过搅拌搅碎气泡,减小平均孔径.","authors":[{"authorName":"左孝青","id":"9a3803c9-1527-4550-afb1-3af3d2b9abe6","originalAuthorName":"左孝青"},{"authorName":"","id":"2f9e01b2-76df-4b22-b74e-d6b65425c1b5","originalAuthorName":""},{"authorName":"毕业顺","id":"f2a7cf94-deca-4f36-9130-c75d8bb071af","originalAuthorName":"毕业顺"},{"authorName":"陆建生","id":"48675e44-5a20-4c8e-8288-240f703ac6a1","originalAuthorName":"陆建生"},{"authorName":"","id":"04c3de1e-0233-4fcc-ac77-e83e77c50a02","originalAuthorName":"周芸"},{"authorName":"孙加林","id":"89d1734f-5ec8-41e1-9f66-5356cd42f8ae","originalAuthorName":"孙加林"}],"doi":"","fpage":"682","id":"3654898d-9fc8-4b55-9e72-d9a74b5d73b8","issue":"4","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"deefe88e-5761-4b33-899b-c23d8cfaf1e2","keyword":"泡沫铝","originalKeyword":"泡沫铝"},{"id":"63738959-3876-4186-88b1-560f91c86f13","keyword":"小孔径","originalKeyword":"小孔径"},{"id":"d7c9a66a-ed3d-4cf9-be93-03e5c95227ae","keyword":"制备","originalKeyword":"制备"},{"id":"70b68705-3544-4354-98bf-d216973ac65b","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"zgysjsxb200904014","title":"小孔径泡沫铝的制备及孔结构细化机理","volume":"19","year":"2009"},{"abstractinfo":"本文采用粉体挤压-烧结工艺制备410L不锈钢金属蜂窝,研究不同的烧结温度和时间条件下烧结蜂窝的收缩率、表观密度和组织结构特征.研究表明,随烧结温度的升高,蜂窝的收缩率和表观密度增大,径向收缩率的变化范围为17%~22%,纵向收缩率的变化范围为11%~19%,表观密度的范围为1.7~2.3g/cm3.随烧结时间的延长,蜂窝的收缩率和表观密度也随之增大,径向收缩率的变化范围为20%~23%,纵向收缩率的变化范围为13%~18%,表观密度的范围为1.8~2.3g/cm3.烧结组织为Fe-Cr固溶体(α-Fe)及第二相颗粒(Fe,Cr)3C和(Fe,Cr)3Si,烧结温度为1235℃、时间为25min最佳.","authors":[{"authorName":"","id":"176226f9-0ecd-45ef-8097-c18d17f755bc","originalAuthorName":"周芸"},{"authorName":"左孝青","id":"b2c5b391-c110-4ec3-a1fe-239a2a30cf0a","originalAuthorName":"左孝青"},{"authorName":"梅俊","id":"56a4264b-19b4-47bd-bc30-18c51f7ce907","originalAuthorName":"梅俊"},{"authorName":"张喜秋","id":"976ac8d8-78ec-4e1d-8fd1-33b7b933e9cd","originalAuthorName":"张喜秋"},{"authorName":"孙加林","id":"b51b6095-1f03-4275-a6d7-ad2c025f80ca","originalAuthorName":"孙加林"}],"doi":"10.3969/j.issn.1673-2812.2005.05.008","fpage":"504","id":"4d3d7e8c-eb3f-4c01-bdec-8f145a6be8d3","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"72847563-5a87-49c3-8dab-dd22e78f41d7","keyword":"金属蜂窝","originalKeyword":"金属蜂窝"},{"id":"393d10c0-08f2-49e3-9118-b201a6e34bc7","keyword":"410L不锈钢","originalKeyword":"410L不锈钢"},{"id":"aeedd3f6-eaae-4b6b-8e21-8022e8643bed","keyword":"表观密度","originalKeyword":"表观密度"},{"id":"45f710d1-be88-41c2-a277-67bc5c702ac6","keyword":"组织结构","originalKeyword":"组织结构"}],"language":"zh","publisherId":"clkxygc200505008","title":"挤压410L不锈钢金属蜂窝的烧结和组织结构研究","volume":"23","year":"2005"},{"abstractinfo":"采用熔体发泡法制备泡沫铝硅合金. 研究发泡剂添加量、粘度、加热温度、搅拌速度等对孔隙率及孔结构的影响, 并通过对发泡介质TiH2的预处理, 研究TiH2形成表层氧化物对延缓其在熔体中的分解及发泡过程的作用. 考察制备泡沫铝材料实验的再现性, 从而确定最佳工艺参数. 研究表明, 以TiH2为发泡介质, 采用熔体发泡制备孔隙结构均匀, 孔隙率为60%~80%的泡沫铝硅合金的最佳工艺条件是: 加热温度为610~630 ℃, TiH2含量为1.2%~1.4%, 金属钙加入量为1.5%, 增粘搅拌时间为4~5 min, 搅拌速度约为800 r·min-1; 发泡介质分散搅拌时间为30~40 s, 搅拌速度约为2000 r·min-1. ","authors":[{"authorName":"","id":"0d63bbfe-59be-4992-bce4-0558bdc4b3e6","originalAuthorName":"周芸"},{"authorName":"左孝青","id":"44adadaa-03d3-4c37-ac01-7cc1f8ff28cc","originalAuthorName":"左孝青"},{"authorName":"许星","id":"6ed186a7-7657-4cba-94cf-10007fdb4b8b","originalAuthorName":"许星"},{"authorName":"任燕燕","id":"e77df33d-6c50-4be5-8d1c-905227230ef7","originalAuthorName":"任燕燕"},{"authorName":"赵国宾","id":"b191b747-27f1-42d0-a6ac-005388d35994","originalAuthorName":"赵国宾"}],"doi":"10.3969/j.issn.0258-7076.2004.01.047","fpage":"191","id":"511675b1-2a69-426f-b6cf-de34a0611ede","issue":"1","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"e0355d4f-a96f-4d40-83cf-805608fb70d6","keyword":"泡沫铝合金","originalKeyword":"泡沫铝合金"},{"id":"721913d8-1fef-4464-a9cc-30bb23e4bb68","keyword":"熔体发泡法","originalKeyword":"熔体发泡法"},{"id":"1bea5d73-2a3e-478d-bf95-a63c17b7920d","keyword":"TiH2发泡介质","originalKeyword":"TiH2发泡介质"}],"language":"zh","publisherId":"xyjs200401047","title":"泡沫Al-6Si合金的制备工艺研究","volume":"28","year":"2004"}],"totalpage":154,"totalrecord":1534}