马念
,
曾胜
,
胡涛
,
龚兴厚
,
胡珍
,
吴崇刚
材料导报
doi:10.11896/j.issn.1005-023X.2016.013.001
聚对苯二甲酸乙二醇酯(PET)因其重复结构单元中含有刚性苯环而成核慢、结晶度低,从而导致综合力学性能与耐热性较差,限制了其工程化应用,故对PET进行成核改性以提高结晶速率与结晶度成为亟待解决的问题。综述了PET的4大类成核剂:无机填料、有机小分子、有机高分子及复合型成核剂;在此基础上,提出机理上不同于异相成核的“离子簇集诱导成核”的概念,即与离子共价相连的聚合物链段因离子簇集而在离子簇近围紧密堆砌,从而诱导“拥挤”链段结晶成核。无机填料类成核剂包括粘土、氧化物与氢氧化物、无机盐、Si3 N4及碳纳米管/石墨等,其成核机理均为异相成核。有机小分子类成核剂涉及羧酸盐、二胺、双酰胺及改性山梨醇等,其中羧酸盐成核机理为离子簇集诱导成核,而其它均属于异相成核。有机高分子类成核剂分为结晶性聚合物、液晶高分子、嵌段共聚物及离子交联型聚合物等;其中前三者属异相成核,后者为离子簇集诱导成核。复合型成核剂为两种以上成核剂(或成核机理)配合使用协同促进PET结晶成核。对比发现,有机高分子与复合型成核剂效果较好,且不会引起PET的降解,为PET优良成核剂。异相与离子簇集诱导耦合高分子成核剂为PET结晶成核改性未来的重点发展方向之一。
关键词:
聚对苯二甲酸乙二醇酯
,
结晶
,
异相成核
,
离子簇集诱导成核
,
改性
郜雪松
,
罗锋
,
杨叶华
,
龚兴厚
,
胡涛
,
吴崇刚
材料导报
doi:10.11896/j.issn.1005-023X.2017.01.005
作为含有多金属氧酸Keggin分子构型的固体强酸,杂多酸(HPAs)具有优异的吸水性、质子传导性(cp )、机械、热及化学稳定性。HPA掺杂陶瓷或聚合物质子交换膜(PEMs)可以有效提高复合 PEMs 的亲水性、cp、燃料阻隔性、机械、热及化学稳定性,同时显著降低其cp 及燃料阻隔性的温度与湿度依赖性。当 HPA掺杂陶瓷时,两者之间的氢键作用导致 HPA在基体中的流失率低、分散性强且掺杂量高,此时复合PEMs的cp(10-1 S/cm数量级)较基体 PEMs(10-3~10-2 S/cm)大幅升高;而当 HPA 掺杂磺化聚合物时,两者之间的静电排斥力造成 HPA在基体中的流失率高、分散性差且掺杂量低,此时复合 PEMs 的cp (10-1 S/cm数量级)较基体PEMs(10-2~10-1 S/cm)仅小幅升高。为了有效降低 HPA在聚合物基体中的流失率,可以采用聚合物膜“三明治”状包覆复合PEMs、盐化 HPA、改性基体或通过第三组分负载 HPA以分别在 HPA 与基体或负载之间形成氢键或静电引力等手段;对于 HPA的负载改性,由于陶瓷或聚合物负载在基体中易团簇,相应地 HPA 在基体中的分散性与掺杂量并未提高。有时采用HPA与吸水性较强的磷酸共掺杂陶瓷基体或负载,以协同提高复合 PEMs 的cp ,然而效果并不显著。以上各种结构的 HPA 掺杂PEMs通常由溶液浇铸法、自组装法、溶胶-凝胶法及浸润法等制备;不同方法往往相互关联,即制备过程可能涉及两种或3种方法的耦合使用。改性 HPA或其负载以显著提高 HPA在磺化聚合物基体中的分散性与掺杂量,借此构建全新、高效的质子传输通道形态以实现复合PEMs的超高cp(100 S/cm数量级),是今后PEMs技术的重点发展方向之一。
关键词:
质子交换膜
,
杂多酸
,
掺杂
,
质子传导性
,
流失率