{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文采用非嵌入式概率点法对风力机NREL_S809翼型进行了不确定性CFD模拟。在两种特征攻角下,量化了当来流攻角存在不确定性变化时,翼型气动特性的变化,以及不确定性扰动在流场中的传播。研究结果表明,攻角的不确定性对于大攻角工况下流动的影响更大。对小攻角条件下的影响主要体现在翼型前缘处,而大攻角条件下的影响还扩展到了翼型中部和尾缘部分。","authors":[{"authorName":"刘智益","id":"1cc84190-1962-4f79-b476-f9f1745e2bc2","originalAuthorName":"刘智益"},{"authorName":"王晓东","id":"2455c8cf-5fbf-45d7-ad61-3e2ff828988f","originalAuthorName":"王晓东"},{"authorName":"康顺","id":"e0a743f0-b01d-4e84-af05-4e86e8bdf315","originalAuthorName":"康顺"}],"doi":"","fpage":"1143","id":"6ad3a930-7cc0-4176-b5bf-2d69bb509ae1","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"6adbf57f-96dd-43a4-9a3e-5f1fa5b3df14","keyword":"翼型","originalKeyword":"翼型"},{"id":"11edb60f-1eeb-4e13-9ea1-e8367a433258","keyword":"风力机","originalKeyword":"风力机"},{"id":"fff6b03a-cee3-4a3a-bc8e-2360469117f8","keyword":"概率点法","originalKeyword":"概率配点法"},{"id":"aee11a36-04f7-4412-a798-eaaf1d78a5ab","keyword":"不确定性","originalKeyword":"不确定性"},{"id":"33cd2f3f-6f7e-414f-838f-4eb5f0ac2a69","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201207013","title":"风力机翼型的不确定性CFD模拟","volume":"33","year":"2012"},{"abstractinfo":"本文采用CFD数值模拟方法结合概率点法研究了当翼型表面粗糙度存在不确定性变化时,NREL_S825风力机翼型的气动特性与绕流场参数分布.获得了两种特征攻角下翼型气动特性的变化,以及不确定性在绕流场中的传播.研究结果表明,升力系数对粗糙度的不确定性较为敏感.粗糙度不确定性对翼型绕流场的影响主要出现在翼型前缘、尾缘和分离区等速度梯度较大区域,并且吸力面压力系数分布对粗糙度的敏感性明显高于压力面.","authors":[{"authorName":"董世充","id":"964f56da-6500-4bbe-9d34-fd04996819f1","originalAuthorName":"董世充"},{"authorName":"王晓东","id":"5ab1ab4c-7685-482b-a1f7-29574b437b16","originalAuthorName":"王晓东"},{"authorName":"康顺","id":"7c75b818-18ae-4bf7-85d5-db7009dcc168","originalAuthorName":"康顺"}],"doi":"","fpage":"1238","id":"7282e45c-0340-4dfe-9a7f-ddaa92580aa8","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"01021d29-d362-4f08-a50d-c0e4eec2bda1","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"59fea344-7332-4f21-be48-ef10a4e33021","keyword":"概率点法","originalKeyword":"概率配点法"},{"id":"ce0aa38d-179c-40a4-8e67-f0810d6f5786","keyword":"翼型","originalKeyword":"翼型"},{"id":"4023ecdf-1a16-4c2d-9c13-d99fae160582","keyword":"粗糙度","originalKeyword":"粗糙度"}],"language":"zh","publisherId":"gcrwlxb201506016","title":"表面粗糙度对翼型气动特性影响的数值模拟","volume":"36","year":"2015"},{"abstractinfo":"本文研究了转子叶顶间隙尺度的不确定性对某轴流压气机的气动性能的影响.采用非嵌入式概率配置点法模拟间隙尺度不确定性在流场中的传播.先以二维随机方腔流动为模型,通过与蒙特卡洛模拟进行对比对非嵌入式概率配置点法进行验证.验证后采用该不确定性方法模拟了当叶顶间隙大小服从Beta分布时气动性能及流场参数的变化.","authors":[{"authorName":"刘智益","id":"a3526e32-6a4e-4298-b0f5-76681aa70d62","originalAuthorName":"刘智益"},{"authorName":"王晓东","id":"3982fbe4-c7c3-489d-94e4-453c4a1f461a","originalAuthorName":"王晓东"},{"authorName":"康顺","id":"50875c06-2cdd-459b-a3d2-1f200d10ac6c","originalAuthorName":"康顺"}],"doi":"","fpage":"628","id":"eae827ad-4388-4910-ad7f-eb649cbba4db","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"de705138-0911-4205-8f91-acfe0d3aab3b","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"77c16e0f-fd2c-4a3a-8309-3fd9898702e8","keyword":"Beta分布","originalKeyword":"Beta分布"},{"id":"ada5f78e-60a3-4549-8c89-8153c8a41121","keyword":"概率点法","originalKeyword":"概率配点法"},{"id":"251527de-998a-43ec-b1d3-6d5f1a9dd7fb","keyword":"叶顶间隙","originalKeyword":"叶顶间隙"}],"language":"zh","publisherId":"gcrwlxb201304010","title":"叶顶间隙尺度的不确定性对压气机性能影响的CFD模拟","volume":"34","year":"2013"},{"abstractinfo":"本文研究了由于风力机叶片安装角的随机误差而导致的失谐问题.将某兆瓦级三叶片风力机的某一叶片安装角作为随机变量,采用一种不确定性量化方法——非嵌入式概率配置点法(NIPRCM)对CFD计算结果进行统计特性分析,讨论此失谐叶片对流场及风力机气动特性产生的影响.结果表明,由于安装角误差导致的失谐叶片会影响其上下游叶片绕流场,且对下游叶片绕流场的影响更明显.安装角的正负偏差引起的叶片载荷变化幅度具有不对称性,且失谐叶片的自身载荷变化方向与其上下游叶片载荷变化方向相反.","authors":[{"authorName":"刘智益","id":"c2d56f0b-f80d-47c1-94ac-6de97b8903f1","originalAuthorName":"刘智益"},{"authorName":"王晓东","id":"f99756ca-cff8-45ea-9065-356f6f0f051f","originalAuthorName":"王晓东"},{"authorName":"康顺","id":"2c4084db-9c7d-4427-ba89-a8cfc40c90ee","originalAuthorName":"康顺"}],"doi":"","fpage":"517","id":"76e9c580-b635-4499-8d67-8a2a4ee17096","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"7fae4a69-6f0b-45bb-8917-eac18724dc54","keyword":"风力机","originalKeyword":"风力机"},{"id":"a95a29ab-9136-408b-b92e-83336b52e372","keyword":"安装角","originalKeyword":"安装角"},{"id":"bc80693f-cb8c-4f7e-961b-c2fa8152defe","keyword":"概率点法","originalKeyword":"概率配点法"},{"id":"2c7ff9af-2c57-4aff-a193-c1884cea6de2","keyword":"不确定性","originalKeyword":"不确定性"},{"id":"3f1b861e-ba86-4f9d-869f-ea865e78329e","keyword":"失谐","originalKeyword":"失谐"}],"language":"zh","publisherId":"gcrwlxb201503013","title":"风轮失谐的气动力不确定性研究","volume":"36","year":"2015"},{"abstractinfo":"动态自适应多尺度小波点法(AWCM)能有效地模拟具有间歇性的物理现象,此方法是近几年发展起来的非常新颖的数值计算方法.为了增强该方法识别与跟踪解的奇异性的能力,并提高数值计算稳定性与计算效率,将精细时程积分算法与之相结合形成了快速动态自适应多尺度小波点法.为了实现这一算法,给出了构造动态自适应网格点集的新方法,构建了以小波(或尺度函数)系数为变量的时程推进公式.通过求解一维Burgers方程,证明了方法具有更加良好的数值计算性质.","authors":[{"authorName":"张文华","id":"64c6d138-dcb1-4aa6-acd1-1712ade02ad8","originalAuthorName":"张文华"},{"authorName":"宇波","id":"18d388a6-9e98-4d1d-a554-018d9de7e65f","originalAuthorName":"宇波"}],"doi":"","fpage":"2694","id":"644efc7f-92de-4ae9-8a14-1a72aefa6110","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"3f6db5ac-7558-4ed8-a346-4bf09d65ee9c","keyword":"小波","originalKeyword":"小波"},{"id":"ea52b845-8837-445a-b162-66b1dfd4ca44","keyword":"动态自适应网格","originalKeyword":"动态自适应网格"},{"id":"b08bb670-3fc7-4f55-85ee-f396caa3bbd8","keyword":"精细时程积分","originalKeyword":"精细时程积分"},{"id":"0afb3bbf-502b-4cf3-84fe-9729fa0d913f","keyword":"间歇性","originalKeyword":"间歇性"}],"language":"zh","publisherId":"gcrwlxb201512033","title":"快速动态自适应小波点法","volume":"36","year":"2015"},{"abstractinfo":"对于带金属内衬的纤维缠绕内压容器,采用叠层薄壳理论进行了分析.利用B样条点法求解.数值计算结果与实测符合较好.","authors":[{"authorName":"罗建辉","id":"954a0564-cc10-4cd8-8efa-bfe940d41256","originalAuthorName":"罗建辉"},{"authorName":"李丽娟","id":"b35880ee-597b-4266-b28c-ddb6565d682c","originalAuthorName":"李丽娟"},{"authorName":"傅为","id":"4854fe94-6471-4dc1-87c3-e2bdaa2ed54f","originalAuthorName":"傅为"}],"doi":"10.3321/j.issn:1000-3851.1998.02.026","fpage":"0","id":"494dfe37-1450-41f7-bc46-e85b28068f5e","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"8fd2b423-35f0-4c32-938d-0038968935cd","keyword":"压力容器","originalKeyword":"压力容器"},{"id":"5f8182bc-73dc-4b53-9ce6-0ad88bd17441","keyword":"叠层壳","originalKeyword":"叠层壳"},{"id":"804566a8-9d5f-4be9-9e41-8e8dcebb1567","keyword":"样条点法","originalKeyword":"样条配点法"}],"language":"zh","publisherId":"fhclxb199802026","title":"样条点法分析具有金属内衬的纤维缠绕内压容器","volume":"15","year":"1998"},{"abstractinfo":"针对双相材料力学性能分析,提出一种极坐标系下的区域分解重心插值点法.根据材料界面将分析区域划分为两个计算区域,在每一个计算区域上建立极坐标系下重心插值点法计算公式.组合两个区域上的计算公式,施加材料界面条件和边界条件,求解得到双相材料的位移场和应力场.双材料计算模型的数值算例表明了所提方法的计算精度.","authors":[{"authorName":"李淑萍","id":"f4d7c3e9-8f43-4523-9ae6-49d32daf1f12","originalAuthorName":"李淑萍"},{"authorName":"王兆清","id":"75628437-c099-4f9d-9b73-31ec583ba450","originalAuthorName":"王兆清"},{"authorName":"唐炳涛","id":"6ab40eaa-b0af-41df-98d2-a294eec3076f","originalAuthorName":"唐炳涛"}],"doi":"","fpage":"25","id":"18c93f3b-eeb6-4f0c-88e0-f4225c38f379","issue":"1","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"d85102d2-6660-41c5-a1bf-4c68a69d537b","keyword":"极坐标系","originalKeyword":"极坐标系"},{"id":"c01ed8f0-2252-43c1-bde3-51fd24c68c90","keyword":"重心插值点法","originalKeyword":"重心插值配点法"},{"id":"bb7ab547-a1e2-4de1-8576-2aefad06bc91","keyword":"区域分解法","originalKeyword":"区域分解法"},{"id":"fbfd71a0-6bad-4cb0-9f42-a347e55e83b5","keyword":"弹性力学","originalKeyword":"弹性力学"},{"id":"b8b7069c-e71e-4a50-ad42-da4e02374969","keyword":"双材料模型","originalKeyword":"双材料模型"},{"id":"419f8366-bfaf-43d8-b6fe-3ab65ab217a5","keyword":"无网格方法","originalKeyword":"无网格方法"}],"language":"zh","publisherId":"blgfhcl201301005","title":"双相材料模拟的区域分解重心插值点法","volume":"","year":"2013"},{"abstractinfo":"在已有的图解法的基础上,对泡点法测定微孔孔径分布的计算方法进行了改进,直接应用测试数据计算孔径分布,避免了图解法的繁杂.同时考虑了测试中的气体膨胀效应,使计算接近实际情况而且适于计算机处理.","authors":[{"authorName":"丁祥金","id":"4bd856eb-3e3f-4b5e-989f-4fb4d57b68c0","originalAuthorName":"丁祥金"},{"authorName":"张继周","id":"4125a094-c63c-4ee6-8533-5777d4b797fd","originalAuthorName":"张继周"},{"authorName":"宝志琴","id":"395b6d40-59c8-4df2-8669-238502bdb369","originalAuthorName":"宝志琴"},{"authorName":"丁传贤","id":"fcfccc64-71d5-48c5-b624-cbbe467d7630","originalAuthorName":"丁传贤"}],"categoryName":"|","doi":"","fpage":"493","id":"ccd13e9e-7444-49d7-8a20-458553fc8365","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"61780cd3-ac1d-448b-90d6-702f0ddd06c8","keyword":"多孔陶瓷","originalKeyword":"多孔陶瓷"},{"id":"da06088f-8de8-4e9d-a3d2-ae2f6abef8a5","keyword":" bubble-point method","originalKeyword":" bubble-point method"},{"id":"6af98a78-0d0e-4819-b21e-d797dd82de99","keyword":" pore-size distritution","originalKeyword":" pore-size distritution"},{"id":"5eb1223a-2bc0-4689-971f-71ac4ef11ccf","keyword":" calculating way","originalKeyword":" calculating way"}],"language":"zh","publisherId":"1000-324X_2000_3_20","title":"泡点法测定微孔孔径分布的改进算法","volume":"15","year":"2000"},{"abstractinfo":"在已有的图解法的基础上,对泡点法测定微孔孔径分布的计算方法进行了改进,直接应用测试数据计算孔径分布,避免了图解法的繁杂.同时考虑了测试中的气体膨胀效应,使计算接近实际情况而且适于计算机处理.","authors":[{"authorName":"丁祥金","id":"ec8cc24d-80d7-460c-94cd-a116aa924db7","originalAuthorName":"丁祥金"},{"authorName":"张继周","id":"c4132783-2785-4b40-91ab-d23ef70f02ea","originalAuthorName":"张继周"},{"authorName":"宝志琴","id":"26ad3fa5-3b99-447d-bc41-5df00f0d8be1","originalAuthorName":"宝志琴"},{"authorName":"丁传贤","id":"744f7d2c-e531-4471-a472-f4a9b122b815","originalAuthorName":"丁传贤"}],"doi":"10.3321/j.issn:1000-324X.2000.03.020","fpage":"493","id":"e57f7e7d-5570-4600-b327-ebb960db9cfc","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"7bb58bee-17f5-4450-b84b-c89f7466f4f4","keyword":"多孔陶瓷","originalKeyword":"多孔陶瓷"},{"id":"32ecc90f-f155-4bc4-87ad-5cc69cfc4534","keyword":"泡点法","originalKeyword":"泡点法"},{"id":"33a114b3-12b4-4645-8f47-ce7f4d74c632","keyword":"孔径分布","originalKeyword":"孔径分布"},{"id":"4c0e0315-34f8-496b-af21-fa4c66b141d1","keyword":"算法","originalKeyword":"算法"}],"language":"zh","publisherId":"wjclxb200003020","title":"泡点法测定微孔孔径分布的改进算法","volume":"15","year":"2000"},{"abstractinfo":"以碳纳米管的Euler-Bernoulli梁理论建立的四阶偏微分方程为计算模型,通过简谐振动假设得到碳纳米管的模态分析方程.采用重心Lagrange插值近似未知模态函数,将模态分析方程和边界条件离散为代数方程,施加边界条件求解代数特征值方程,得到碳纳米管在不同边界条件下的自由振动频率.数值计算结果与文献报道结果比较表明所提方法的有效性和计算精度.","authors":[{"authorName":"李淑萍","id":"cff2eff9-dd10-4704-be57-5bb8af6b7be6","originalAuthorName":"李淑萍"},{"authorName":"王兆清","id":"088a973c-9f16-4c67-a43f-b53651030106","originalAuthorName":"王兆清"}],"doi":"","fpage":"33","id":"2d4b5bc6-60b1-481a-b24d-1f2d47675d9a","issue":"6","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"3d24473c-0e14-45a2-a0ec-db42c52306d5","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"362cf9fc-dc74-474f-bace-175e5d4e7220","keyword":"重心插值点法","originalKeyword":"重心插值配点法"},{"id":"ae5a3dad-0aac-4d6c-82f1-c243493f98e0","keyword":"振动分析","originalKeyword":"振动分析"},{"id":"91c0505b-ae11-41bc-81a4-ce67db77ee43","keyword":"固有频率","originalKeyword":"固有频率"},{"id":"9714a139-3934-4602-b022-fa165f9a5f86","keyword":"梁模型","originalKeyword":"梁模型"}],"language":"zh","publisherId":"blgfhcl201206007","title":"重心插值点法计算碳纳米管的振动频率","volume":"","year":"2012"}],"totalpage":393,"totalrecord":3922}