任淑
,
刘国娟
,
吴晛
,
陈新庆
,
吴明红
,
曾高峰
,
刘子玉
,
孙予罕
催化学报
doi:10.1016/S1872-2067(16)62557-3
甲醇制低碳烯烃(MTO)技术既可实施石油替代路线,又能解决低碳烯烃不足的问题,因而具有重要意义.在MTO技术中,SAPO-34分子筛因其高水热稳定性、适宜的微孔结构和酸强度而展现了优异的MTO性能.但SAPO-34分子筛孔道较小,易形成积碳物种而覆盖活性中心,导致分子筛催化剂失活快,反应流程复杂.延长SAPO-34催化剂的单程寿命可减少其再生频率,降低能耗并节约成本.在微孔SAPO-34分子筛中引入介孔或大孔孔道来组成多级孔道结构,可大大促进反应物及产物分子在孔道内的扩散,从而降低积碳速率,延长催化剂寿命.目前,文献中主要采用直接合成路线制备多级孔SAPO-34分子筛,该过程所用的二级模板剂价格较贵,且合成步骤复杂.而采用后处理方法,即先合成SAPO-34分子筛母体,再进行酸碱后处理来制备多级孔SAPO-34分子筛是非常有前景的技术路线.本文首先通过水热合成法制备了立方形貌SAPO-34分子筛,再采用不同种类的酸溶液(硝酸、草酸及丁二酸)对其进行后处理,制备了具有良好相对结晶度的多级孔SAPO-34,考察了酸种类对所得多级孔SAPO-34结构及其MTO性能的影响.研究发现,经硝酸和草酸处理后的样品在特定晶面上出现了蝴蝶状孔道,形成了由微孔、介孔(40–50 nm)和大孔(400–500 nm)组成的多级孔分子筛;其比表面积高达876 m2/g,孔容为0.36 cm3/g,该多级孔道大幅改善了MTO过程中的分子扩散性能.酸后处理过程并没有影响分子筛的化学环境及酸中心强度,却降低了分子筛的强酸中心数量并增加了弱酸中心数量.在多级孔结构及酸中心的协同作用下,其MTO性能得到了大幅度提升:经硝酸和草酸处理后所得多级孔SAPO-34,其MTO寿命(400°C,1 atm,甲醇空速1 h–1)分别由母体的210 min增至360和390 min,低碳烯烃的总选择性由母体的90%提高至92%–94%,并可根据孔道大小调整产物组成,使乙烯选择性在37.4%–51.5%内调变.对比发现,MTO过程中多级孔SAPO-34上的积碳量由母体的15%提高到18%,但积碳速率却由0.071降至0.046 g/min.失活多级孔SAPO-34内的积碳物种主要为较大的分子,其中芘及芘取代物的含量高达73%,而母体SAPO-34中芘及芘取代物的含量则降低至49%.这是因为多级孔SAPO-34内部更大的孔道空间可容纳更多的大分子积碳物种所致.丁二酸处理后的样品未产生多级孔道,却使部分微孔受损且增加了强酸中心数量,导致其更易失活,MTO寿命也降至100 min.选择合适种类的酸溶液进行后处理可控制备多级孔SAPO-34,可大幅改善其MTO性能.
关键词:
酸处理
,
多级孔
,
SAPO-34
,
甲醇制烯烃
,
单程寿命
刘子玉
,
刘中民
,
齐越
,
许磊
,
何艳丽
,
杨越
,
张阳阳
催化学报
以白碳黑为硅源,偏铝酸钠为铝源,六亚甲基亚胺(HMI)为结构导向剂,采用动态水热法合成了MCM-22,UTM-1和kenyaite,并考察了硅铝比对产物晶相的影响.结果表明, 配料硅铝比是影响产物晶相的重要因素.n(SiO2)/n(Al2O3)=30~50时,晶化产物为MCM-22; n(SiO2)/n(Al2O3)=71~190时,晶化产物为MCM-22与kenyaite的混合物,且随着硅铝比的增大,MCM-22的含量逐渐减少而kenyaite的含量逐渐增加; n(SiO2)/n(Al2O3)=228~609时,晶化产物为八元环结构的UTM-1; 不含铝源时,晶化产物为kenyaite.就合成MCM-22和UTM-1而言,凝胶中的铝是必不可少的.上述几种晶化产物均呈片状,可以通过扫描电镜加以区分.
关键词:
MCM-22分子筛
,
UTM-1分子筛
,
kenyaite
,
水热合成
,
硅铝比
吴磊
,
刘子玉
,
夏林
,
丘明煌
,
刘旭
,
朱浩佳
,
孙予罕
催化学报
doi:10.1016/S1872-2067(12)60575-0
分别采用微波和水热法合成了具有片状及立方结构的SAPO-34分子筛.结果发现,片状SAPO-34分子筛晶粒厚度为130nm,比表面积为593 m2/g;立方结构SAPO-34分子筛粒径为1.5-2.5 μm,比表面积为708 m2/g.二者具有数量相近的强酸中心,后者的弱酸位数量略少.甲醇制烯烃反应结果表明,在450℃和1.0h-1的反应条件下,片状SAPO-34分子筛的催化寿命可达380 min,乙烯选择性最高为51.77%,乙烯、丙烯及丁烯的总选择性最高为90.20%;而立方结构SAPO-34的催化寿命仅为212 min,乙烯选择性最高为49.84%,乙烯、丙烯及丁烯的总选择性最高只有86.81%.这可能源于片状晶粒的扩散路径较短,抑制了低碳烯烃的进一步转化及积碳的生成,因此具有较高的低碳烯烃选择性及较长的寿命.
关键词:
SAPO-34分子筛
,
形貌
,
甲醇制烯烃
,
反应温度
,
空速
刘子玉
,
朱子彬
,
王仁远
,
朱学栋
催化学报
以合成的微孔分子筛MCM-22为原料,将其与表面活性剂及氢氧化钠一起回流溶解,再调节溶液的pH值至7~9, 使MCM-22转化为高水热稳定性的介孔材料. 所得介孔材料具有蠕虫状的均匀孔道,骨架中不含有MCM-22的微观结构单元. 该介孔材料至少含有18%的表面活性剂,经823 K焙烧脱除表面活性剂后,其孔径为2 2 nm, 比表面积为 1 038 m2/g, 孔容为0 97 cm3/g. 焙烧后的介孔材料具有非常高的水热稳定性,经沸水回流100 h后其比表面积为896 m2/g, 孔容为0 90 cm3/g, 孔径为2 1 nm, 即使经过300 h的回流,该材料仍能保持698 m2/g的比表面积和0 90 cm3/g的孔容. 固体 29Si MAS NMR结果表明,该介孔材料的高水热稳定性与其高表面缩合度有关.
关键词:
MCM-22
,
介孔材料
,
水热稳定性
,
后处理
刘子玉
,
魏迎旭
,
齐越
,
刘中民
催化学报
以阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)为模板剂,采用水热合成法制备了中孔氧化钛原粉,再采用磷酸和氯化铝溶液依次对中孔氧化钛原粉进行后处理,得到了具有高热稳定性的中孔Ti-P-Al材料. 通过粉末X射线衍射、透射电子显微镜和氮物理吸附等方法对样品进行了表征. 结果表明,反应凝胶组成对样品的中孔结构有较大的影响,当反应凝胶配比为Ti(SO4)2∶CTAB∶H2O=1∶0.54∶430, 温度为363 K, 处理时间为10~20 min时,所得的TiO2原粉具有较规整的中孔结构. 此样品经过0.25 mol/L的磷酸处理后有序性有较大程度的提高. 将磷酸处理过的样品进一步用氯化铝溶液处理,得到了中孔结构的Ti-P-Al材料,此材料经过873 K焙烧后仍具有典型的中孔特征,其比表面积为 382 m2/g, 孔径为3.13 nm.
关键词:
钛
,
磷
,
铝
,
中孔材料
,
后处理
,
热稳定性
刘子玉
,
齐越
,
张莹
,
曲丽红
,
桑石云
,
刘中民
催化学报
以十六烷基三甲基溴化铵(CTAB)为模板剂,采用水热法合成了中孔氧化锆,依次用磷酸和水合氯化铝溶液对其进行后处理,得到了具有高热稳定性、高有序性的中孔Zr-P-Al材料. 样品的XRD,TEM 和氮气物理吸附测试结果表明,反应凝胶中的水量和陈化条件对样品结构有很大影响. 当反应凝胶配比为Zr(SO4)2∶CTAB∶H2O=1∶0.27∶240时,所得样品具有较规整的六方结构. 此样品经磷酸处理后,有序程度进一步提高. 将磷酸处理过的样品再用水合氯化铝溶液处理,得到的材料具有典型的中孔特征和很高的热稳定性. 最终产物经过700 ℃焙烧后具有416 m2/g 的比表面积,孔容积较大,孔径分布均匀,800 ℃焙烧后其比表面积仍可达到227 m2/g. 样品的高稳定性来源于锆、磷和铝之间的相互作用.
关键词:
锆
,
磷
,
铝
,
中孔材料
,
后处理
,
热稳定性
,
长程有序性
,
水热合成
马红超
,
刘子玉
,
王振旅
,
朱万春
,
王国甲
应用化学
doi:10.3969/j.issn.1000-0518.2002.03.020
考察了异丁烷在负载型催化剂V2O5/γ-Al2O3上的脱氢行为,在常压下,反应温度590 ℃,GHSV为1 000 h-1时,该催化剂表现出了良好的催化性能. 用XRD、UV-Vis、BET等手段对催化剂的结构进行了研究. 结果表明V2O5/γ-Al2O3催化剂催化脱氢活性与V2O5的分散和状态相关联;载体类型,活性组分的担载量及载体和催化剂的焙烧温度是影响活性组分表面化学和物理状态的重要因素.
关键词:
异丁烷
,
脱氢
,
五氧化二钒