ZHOU Li
,
SUN Dale
,
LIU Changsheng
,
WU Qiong
钢铁研究学报(英文版)
The fatigue behavior of high speed steel (HSS) roll materials for hot rolling was researched under watercooling conditions by laser impacting. The microstructure of HSS sample and the morphologies of fatigue samples were observed by scanning electron microscope. The phase structure was detected by XRD. The morphology of situ oxide scale was observed by optical microscope, and the expansion coefficient was measured by TGA. The experiment results indicate that the cracks come into being at the carbidematrix interface, but there are no cracks in the matrix after many times of laser impacting treatment, for the situ sample taken from the fractured roll surface, big carbides are more sensitive to the fatigue, and peel off prior to small ones. The relevant fatigue mechanisms are also discussed.
关键词:
high speed steel;fatigue;laser impacting;stress concentration;carbide
WANG Jianjun
,
GUO Shangxing
,
ZHOU Li
,
LI Qiang
钢铁研究学报(英文版)
Decopperization in molten steel with FeSNa2S slag was investigated in the laboratory. It was found that with an increase in FeS content of the FeSNa2S slag, the decopperization ratio increased. The decopperization ratio could reach the maximum of 716% in hot metal. The decopperization ratio was closely related to the carbon content, and the higher the carbon content, the higher was the decopperization ratio. Sulphur addition was found in the process of decopperization, and the increase in sulphur content of molten steel was about 02%-042%. However, by adding 30%-50% of BaO to the FeSNa2S slag, the addition of sulfur content in molten steel could be reduced by about 50%. The finer slag system composition was FeS∶Na2S∶BaO=40∶20∶40.
关键词:
molten steel;decopperization;FeS
李志宏
,
柳卫平
,
白希祥
,
郭冰
,
连钢
,
颜胜权
,
王宝祥
,
陆昀
,
曾晟
,
苏俊
原子核物理评论
doi:10.3969/j.issn.1007-4627.2005.01.006
利用8Li次级束测量了质心系能量7.8 MeV 2H(8Li, 9Li)1H反应的角分布, 导出了8Li(d, p)9Li反应的天体物理S因子及9Li→8Li+n虚衰变的渐近归一化系数.
关键词:
8Li(d,p)9Li反应
,
角分布
,
天体物理S因子
,
渐近归一化系数
HUANG Jianshun CHEN Junming Shanghai Institute of Metallurgy
,
Academia Sinica
,
Shanghai
,
China Research Associate
,
Shanghai Institute of Metallurgy
,
Academia Sinica
,
Shanghai 200050
,
China
金属学报(英文版)
Crystal structure of γ-Li_xFe_2O_3,inserted Li electrochemically,was studied by Moss- bauer spectroscopy together with X-ray diffraction,XPS and electrochemical method,On the insertion of Li at low current density,the crystal structure is keeping original spinel; while at higher current density or by thermal activation,owing to violent movement of Li~+ ions,part of crystal structure transforms into rock type similar to face-centered cubic structure of ferrous oxide.The transition channels during insertion of Li~+ ions and limitation of Li~+ ions inserted were discussed.
关键词:
null
,
null
,
null
Journal of Materials Research
The effect of Li(3)N additive on the Li-Mg-N-H system was examined with respect to the reversible dehydrogenation performance. Screening Study with varying Li(3)N additions (5, 10, 20, and 30 mol%) demonstrates that all are effective for improving the hydrogen desorption capacity. Optimally, incorporation of 10 mol% Li(3)N improves the practical capacity from 3.9 wt% to approximately 4.7 wt% hydrogen at 200 degrees C, which drives the dehydrogenation reaction toward completion. Moreover, the capacity enhancement persists well over 10 de-/rehydrogenation cycles. Systematic x-ray diffraction examinations indicate that Li(3)N additive transforms into LiNH(2) and LiH phases and remains during hydrogen cycling. Combined structure/property investigations suggest that the LiNH(2) "seeding" should be responsible for the capacity enhancement, which reduces the kinetic barrier associated with the nucleation of intermediate LiNH(2). In addition, the concurrent incorporation of LiH is effective for mitigating the ammonia release.
关键词:
complex hydrides;improvement;mixtures;imides;amide;h-2