ZHAO Hongzhuang
,
Seokjae LEE
,
Youngkook LEE
,
LIU Xianghua
,
WANG Guodong
钢铁研究学报(英文版)
This study aims at the experimental analysis of the transformation induced plasticity (TRIP) phenomenon. Experiments are conducted in which martensite is allowed to grow under the influence of a series of externally applied stresses. The magnitude of the applied stresses is less than 67% of the yield strength of austenite σγ(Ts). Since there is no obvious difference between the transformation plasticity under tension and the compression for the lower applied stresses, only compressive stresses are applied. The results confirm that the transformation plasticity is proportional to the applied stress if the latter does not exceed 67% of σγ(Ts). The TRIPstrain, the kinetics, and their dependence on the applied stresses are studied. The comparison between calculated results and experimental results shows that the model accurately describes the phenomenon.
关键词:
applied stress;TRIP;martensite transformation;lowalloy steel
Europhysics Letters
Noncollinear magnetic investigations of the ground state in PrFeAsO have been performed by the density-functional theory. We calculated the total energy and made structure optimization, and the electronic density of states of PrFeAsO was analyzed. There are three different magnetic structures in PrFeAsO defined by experiments. Based on these magnetic structures, we studied four collinear and four noncollinear cases. The ground state is found to take the ordering proposed by Zhao, in which the FeAs plane is of stripe antiferromagnetism and Pr spins are perpendicular to Fe spins. The electronic density of states indicates that for PrFeAsO the increase of the electron Coulomb interaction leads to a decrease in conductivity. Copyright (C) EPLA, 2011
关键词:
high-temperature superconductivity;phase-diagram;oxypnictides;instability
刘建国
,
安振涛
,
张倩
,
杜仕国
,
姚凯
,
王金
材料导报
doi:10.11896/j.issn.1005-023X.2017.04.030
为评估氧化剂硝酸羟胺的热稳定性,使用标准液体铝皿于3 K/min、4 K/min、5 K/min加热速率下进行热分析.借助非等温DSC曲线的参数值,应用Kissinger法和Ozawa法求得热分解反应的表观活化能和指前因子,根据Zhang-Hu-Xie-Li公式、Hu-Yang-Liang-Xie公式、Hu-Zhao-Gao公式以及Zhao-Hu-Gao公式,计算硝酸羟胺的自加速分解温度和热爆炸临界温度,并对热分解机理函数进行了研究.设计了7条热分解反应路径,采用密度泛函理论B3LYP/6-311++G(d,p)方法对硝酸羟胺的热分解进行了动力学和热力学计算.计算结果表明,硝酸羟胺热分解的自加速分解温度TsADT=370.05 K,热爆炸临界温度Te0=388.68K,Tbp0=397.54 K,热分解最可几机理函数的微分形式为f(a) =17×(1-α)18/17.硝酸羟胺热分解各路径中,动力学优先支持路径Path 6、Path 5、Path 4和Path 1生成NO和NO2,其次是Path 2、Path 7和Path 3生成N2和N2O.温度在373 K以下时,Path 1'反应无法自发进行,硝酸羟胺无法进行自发的热分解.从热力学的角度来看,硝酸羟胺在370.05K以下储存是安全的.
关键词:
硝酸羟胺
,
热分析
,
热稳定性
,
热分解机理
,
密度泛函理论