{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"选聚丙烯酸钠(PAA)、聚丙烯酰胺(PAM)、丙烯酸-甲基丙烯酸共聚物P(AA-MA)、丙烯酸-丙烯酰胺共聚物P(AA-AM)、丙烯酸-甲基丙烯酸-丙烯酰胺共聚物P(AA-AM-MA),系统研究其吸湿过程和机理。吸湿性能的测试结果表明,硅胶和分子筛10 h内便饱和,有机高分子吸湿材料仍能持久吸湿,其饱和吸湿容量比硅胶提高至少6%以上,比分子筛提高至少50%以上,吸湿速率快于硅胶和分子筛。吸附动力学实验表明,有机高分子吸湿材料的吸湿主要遵循准二级动力学模型,吸湿率受湿度和高分子树脂自身的吸附性能影响。Freundlich吸附等温模型证实有机高分子吸湿材料吸湿并非单层吸附,而是物理吸附和化学吸附同时发生,且多以化学吸附为主。热力学分析得该吸湿过程为吸热反应且可自发进行。","authors":[{"authorName":"张春晓","id":"5fd2ccae-6960-4dba-bce5-325fd8766f1d","originalAuthorName":"张春晓"},{"authorName":"白福臣","id":"ef798333-0477-467c-b1ac-e9b23ffa7e3d","originalAuthorName":"白福臣"},{"authorName":"潘振远","id":"2a2d592a-e255-4961-b74c-ed5806f08f72","originalAuthorName":"潘振远"},{"authorName":"张万喜","id":"06fe8249-3d90-48a0-9af2-b2e04d3a1d37","originalAuthorName":"张万喜"},{"authorName":"刘健","id":"e86bc1d2-2b58-4749-bd94-182469d292ca","originalAuthorName":"刘健"}],"doi":"","fpage":"83","id":"646c9c5d-08cf-4ed3-b36a-2aeed3ac6b1d","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"ddcd6047-6f17-4dac-a795-29dd4f38d6f9","keyword":"有机高分子吸湿材料","originalKeyword":"有机高分子吸湿材料"},{"id":"b358602f-5410-4558-ac65-bace1e9f4e43","keyword":"吸湿","originalKeyword":"吸湿"},{"id":"3f9780de-29ba-4b6c-9e36-011bed885111","keyword":"吸附模型","originalKeyword":"吸附模型"},{"id":"bd8d70b6-4938-4244-9443-a97dc752767d","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"gfzclkxygc201203022","title":"有机高分子吸湿材料的吸附模型与机理","volume":"28","year":"2012"},{"abstractinfo":"采用硝酸预氧化焦粉、氯化锌化学活化法制备了焦粉基碳吸附材料.考察了焦粉基碳吸附材料对水中铜(Ⅱ)离子的吸附特性.实验结果表明,焦粉基碳吸附材料吸附平衡时间90 min,该吸附过程符合Langmuir型吸附模型;不同温度下的ΔH~θ>0、ΔG~θ<0,证实其吸附过程是一个自发吸热过程;ΔS~θ>0,表明铜离子在固液界面有序性减小、混乱度增大.对实验数据进行数学模型拟合,二级相关系数R~2=0.999 1,显示吸附过程动力学与二级动力学模型相关性较好.","authors":[{"authorName":"雒和明","id":"93b2f4bb-5af4-4275-aab4-2de61ce8bfb0","originalAuthorName":"雒和明"},{"authorName":"曹国璞","id":"3381748a-586e-40a0-bbf1-f7158c39623b","originalAuthorName":"曹国璞"},{"authorName":"张建强","id":"9930fea2-f413-4c9a-82a8-731192e4ddc8","originalAuthorName":"张建强"},{"authorName":"张徳懿","id":"969ad4af-e335-49a6-b7ae-742c58931200","originalAuthorName":"张徳懿"},{"authorName":"赵霞","id":"069c0181-5dcb-4202-8f0c-384e848ee822","originalAuthorName":"赵霞"},{"authorName":"董鹏","id":"22326c98-5f1d-483f-8a04-2e7fdc79e1a1","originalAuthorName":"董鹏"}],"doi":"10.3724/SP.J.1095.2010.90068","fpage":"211","id":"2b3b1759-c49b-4471-a7df-ac399b4ef0c8","issue":"2","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"598b87a1-b1b1-47b4-91df-36385b50ab54","keyword":"焦粉基碳吸附材料","originalKeyword":"焦粉基碳吸附材料"},{"id":"55d645c4-b5ae-447f-b06e-c9b181cd33b1","keyword":"铜(Ⅱ)离子","originalKeyword":"铜(Ⅱ)离子"},{"id":"ba6cb0a2-5a8e-4168-9581-349c5937158a","keyword":"吸附模型","originalKeyword":"吸附模型"},{"id":"93dd9edf-4c10-4217-9df5-03a5be5182bc","keyword":"吸附热力学","originalKeyword":"吸附热力学"},{"id":"d363d9be-86ea-411e-bdfa-dd3b41cb6c77","keyword":"吸附动力学","originalKeyword":"吸附动力学"}],"language":"zh","publisherId":"yyhx201002018","title":"焦粉基碳吸附材料对铜(Ⅱ)离子的吸附特性","volume":"27","year":"2010"},{"abstractinfo":"采用XPS、SEM等技术对耗散防热材料静态氧化试验中氧化膜的生成情况及氧化微观形貌进行了研究,并提出了不同温度及不同氧化时间下Al-Mg/C耗散防热材料静态氧化的吸附模型和扩散模型.氧化模型的建立,为研究该材料的耐烧蚀性能,设计冷却剂的成分提供了相应的理论依据.","authors":[{"authorName":"武高辉","id":"4f16a235-10b6-41b3-8b72-fed9ebf2bc9a","originalAuthorName":"武高辉"},{"authorName":"陈苏","id":"b4c96bd5-b831-49f0-9b05-f0a6252ae4f6","originalAuthorName":"陈苏"},{"authorName":"白雪","id":"b5182e92-fb1d-441f-a1f1-db87953da7fe","originalAuthorName":"白雪"},{"authorName":"康鹏超","id":"1a490b73-5088-49d2-8a6b-ec155951f704","originalAuthorName":"康鹏超"},{"authorName":"刘祥","id":"76c51b6f-3abe-49c8-8548-606fbe882903","originalAuthorName":"刘祥"},{"authorName":"武练梅","id":"3441248e-85bc-46b7-8528-5d279560f6df","originalAuthorName":"武练梅"}],"doi":"","fpage":"520","id":"6d017831-4045-45a0-adbb-8c87f84d843b","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"6dd85b85-1b28-4bfd-aca7-33f033cb4b48","keyword":"防热材料","originalKeyword":"防热材料"},{"id":"2175a4af-9a59-4751-85d5-4ba6ee3ba180","keyword":"吸附模型","originalKeyword":"吸附模型"},{"id":"f8fbf1b9-933a-4f6b-8d32-07ca1150babd","keyword":"扩散模型","originalKeyword":"扩散模型"},{"id":"8f81a80b-0b47-40b1-af5f-fd929e552e07","keyword":"氧化模型","originalKeyword":"氧化模型"}],"language":"zh","publisherId":"xyjsclygc2010z1124","title":"Al-Mg/C耗散防热材料静态氧化模型","volume":"39","year":"2010"},{"abstractinfo":"指出了渗透蒸发过程的两个关键步骤,即膜表面的吸附步骤和膜内的扩散步骤;详细描述了渗透蒸发膜中的吸附、扩散和传质模型.这些模型分析和预测了通过渗透蒸发膜中的致密选择分离层所进行的质量传递.分别阐述了不同模型的内容、特点和使用范围.涉及模型的使用范围时还考虑到了不同的聚合物分类,即玻璃态、半晶态和橡胶态.指出了渗透蒸发传质模型研究中膜机理的研究与膜过程和组件的设计两个重要方面.","authors":[{"authorName":"刘雪春","id":"c199201d-e314-43f5-bc2c-faabf2c78112","originalAuthorName":"刘雪春"},{"authorName":"陈翠仙","id":"672b7afe-4b76-4bd6-9e63-e71a19eb32ea","originalAuthorName":"陈翠仙"},{"authorName":"李继定","id":"e4560c39-602f-4c8e-bb6e-ae5b8b6d6493","originalAuthorName":"李继定"}],"doi":"10.3969/j.issn.1007-8924.2009.05.020","fpage":"94","id":"2885b873-84d9-494e-bddd-6e272f584b71","issue":"5","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"9a1eb971-f7e5-4c2e-aca9-9025df1ca793","keyword":"吸附模型","originalKeyword":"吸附模型"},{"id":"67ab8300-6573-40ce-b6f7-7f6f8832b9f9","keyword":"扩散模型","originalKeyword":"扩散模型"},{"id":"00545bae-7c8c-4eaf-aa4b-8bae06e15cba","keyword":"传质模型","originalKeyword":"传质模型"},{"id":"61976236-932d-4f0d-b119-80bc482b3d84","keyword":"膜传递机理","originalKeyword":"膜传递机理"},{"id":"8788dff9-788c-4d4f-8703-82c086e63ae4","keyword":"渗透蒸发","originalKeyword":"渗透蒸发"}],"language":"zh","publisherId":"mkxyjs200905020","title":"渗透物分子在渗透蒸发膜中的传质模型","volume":"29","year":"2009"},{"abstractinfo":"阳离子乳胶粒与棉纤维存在静电作用而发生吸附,研究其导电能力与吸附作用具有重要理论和应用价值.采用电导滴定法通过测定乳胶粒表面氯离子含量,研究了乳胶粒的导电能力,并探讨了乳胶粒在棉纤维表面的吸附模型.结果表明,阳离子乳胶粒的浓度(cp)在0.05 ~0.3×10-8 mol/L范围内与电导率(A)呈良好的线性关系(A=8.0913cp+1.8093,R2=0.9986);根据电解质理论计算得出阳离子乳胶粒中胶核的极限摩尔电导率在恒定温度(25℃)下随着乳胶粒浓度的增加呈降低趋势;此外,阳离子乳胶粒在棉纤维表面的吸附符合Langmuir型吸附模型.","authors":[{"authorName":"贺东琴","id":"bbc37acf-a127-4619-bdef-a36743199be2","originalAuthorName":"贺东琴"},{"authorName":"房宽峻","id":"26daae7b-fb97-45cc-857f-fd39a348cc75","originalAuthorName":"房宽峻"}],"doi":"10.3724/SP.J.1095.2014.30389","fpage":"581","id":"73324b6d-7383-450e-b963-cab00df51bb6","issue":"5","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"51fecd37-f24e-442a-836a-de5e662c879d","keyword":"电导滴定","originalKeyword":"电导滴定"},{"id":"54d6c090-684c-4c56-9c28-4072667f0301","keyword":"阳离子乳胶粒","originalKeyword":"阳离子乳胶粒"},{"id":"f20b4894-7c24-4c50-80ea-f2baf2553c88","keyword":"摩尔电导率","originalKeyword":"摩尔电导率"},{"id":"ed364a46-5b54-4abf-8c96-4fab89ebf33e","keyword":"吸附模型","originalKeyword":"吸附模型"}],"language":"zh","publisherId":"yyhx201405014","title":"电导滴定法研究阳离子乳胶粒的导电性能及其在棉织物上的吸附","volume":"31","year":"2014"},{"abstractinfo":"采用巨正则蒙特卡罗方法和分子动力学方法模拟了正辛烷分子在稀土Ce改性的Y分子筛上的吸附扩散过程.通过模拟分析吸附等温线、吸附势能、最可几相互作用能、吸附能量密度图以及扩散系数等相关参数,分别得到了303 K和423 K温度下,不同含量Ce离子对烃类正辛烷分子在Y分子筛上的吸附扩散行为产生的影响及调变规律.结果表明,Ce离子能够有效降低正辛烷在Y型分子筛上的吸附势能,使更多的烃分子趋于物理吸附;同时随Ce离子含量的增加会调变正辛烷在Y分子筛上的吸附速率和饱和吸附量,高温条件下Ce物种对正辛烷的扩散行为影响更为显著.","authors":[{"authorName":"张乐","id":"345c9e73-9938-471f-9b0c-093b47e1f549","originalAuthorName":"张乐"},{"authorName":"李强","id":"b98b4481-07d6-44e5-af45-225cb1cde54d","originalAuthorName":"李强"},{"authorName":"赵越","id":"8ed42457-cfab-4be8-b666-3c2d510f0f52","originalAuthorName":"赵越"},{"authorName":"秦玉才","id":"a3e14a7a-e251-4565-9844-6e79f2bf0552","originalAuthorName":"秦玉才"},{"authorName":"高雄厚","id":"d65946e1-9c2e-4224-847c-311fb04bb3e0","originalAuthorName":"高雄厚"},{"authorName":"张晓彤","id":"a0ccfc57-f30c-4392-81ff-352b258a3180","originalAuthorName":"张晓彤"},{"authorName":"宋丽娟","id":"c6b6389a-aa34-40fa-be9f-8f6016dbe020","originalAuthorName":"宋丽娟"}],"doi":"","fpage":"2913","id":"b1e90f5d-eae4-4e9b-83d9-961a57dd01a4","issue":"12","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"b4b5da2a-0d77-40cc-98fb-93f7a9bcdb22","keyword":"CeY分子筛","originalKeyword":"CeY分子筛"},{"id":"1a53bc75-24b5-450f-8bd5-215cb75c5825","keyword":"正辛烷","originalKeyword":"正辛烷"},{"id":"fb0d6dbb-cc97-4153-8d58-85283eb3c968","keyword":"吸附模型","originalKeyword":"吸附模型"},{"id":"f2289f4c-2342-42df-b322-afc9d1020373","keyword":"蒙特卡罗模拟","originalKeyword":"蒙特卡罗模拟"}],"language":"zh","publisherId":"rgjtxb98201612030","title":"不同Ce含量改性的Y型分子筛对正辛烷吸附的分子模拟","volume":"45","year":"2016"},{"abstractinfo":"为比较研究不同纳微米尺寸的一水草酸钙(COM)和二水草酸钙(COD)晶体对阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)的吸附差异,探讨抑制剂对结石形成的抑制机理,本研究测定了各浓度CTAB下不同尺寸COM或COD对CTAB的吸附量;采用XRD和FT-IR表征吸附前后晶体是否发生晶相改变;采用Zeta电位仪测定吸附后晶体表面的Zeta电位随CTAB浓度的变化。结果发现,随着c(CTAB)浓度升高,3μm和10μm的COM、COD晶体的吸附曲线由上升段和平台段组成,而小尺寸的50 nm、100 nm、1μm的COM、COD晶体的吸附曲线为直线型。随着晶体尺寸的增大, COM和COD晶体的吸附量依次降低。当尺寸相同时, COM对CTAB的吸附量要大于COD,归因于CTAB更容易选择吸附在COM表面负电荷的区域。上述结果表明,草酸钙晶体对阳离子表面活性剂的吸附量与比表面积和晶体的晶面结构有关。晶体尺寸越小,比表面积越大,晶面暴露的草酸根密度越大, CTAB的吸附量越大,导致晶体表面Zeta电位绝对值增大,静电排斥力增强,从而抑制尿微晶的聚集,有利于抑制草酸钙结石的形成。","authors":[{"authorName":"甘琼枝","id":"da2d1f66-1e96-4765-b106-beab6a76d1a0","originalAuthorName":"甘琼枝"},{"authorName":"温小玲","id":"9b1c39b3-a5f7-4d5c-a0b3-c81ad37be390","originalAuthorName":"温小玲"},{"authorName":"丁一鸣","id":"839b1a40-1d00-4ec8-84b2-0cf00b67fed4","originalAuthorName":"丁一鸣"},{"authorName":"欧阳健明","id":"c5b38481-a83b-43c8-b523-da50e0a6aece","originalAuthorName":"欧阳健明"}],"doi":"10.15541/jim20150293","fpage":"159","id":"8a588b34-9feb-478f-b534-ee97aeae3417","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"600afd22-a80f-4e7b-aa66-7363fe85245c","keyword":"晶体尺寸","originalKeyword":"晶体尺寸"},{"id":"bc673b12-6ab6-4bf5-a6f3-eda02bf10b0f","keyword":"阳离子表面活性剂","originalKeyword":"阳离子表面活性剂"},{"id":"1a3016f9-a0da-4363-8c60-27a1baf57c1c","keyword":"吸附模型","originalKeyword":"吸附模型"},{"id":"7e4deb9b-60f1-49db-ba65-fb0391720f43","keyword":"草酸钙","originalKeyword":"草酸钙"}],"language":"zh","publisherId":"wjclxb201602007","title":"不同尺寸COM、COD对阳离子表面活性剂CTAB的吸附性质差异","volume":"","year":"2016"},{"abstractinfo":"综述了化学镀镍溶液中的稳定剂及其作用,重点讨论了稳定剂的分类及其作用机理.在吸附理论的基础上对稳定剂的吸附能力作了详细探讨,并对其影响因素进行了简要分析.同时介绍了描述稳定剂吸附的几个模型,并指出稳定剂的研发是今后镀液稳定性得以提高的关键.","authors":[{"authorName":"仵亚婷","id":"e730d2d8-affe-4a75-a313-4b994ad8cf25","originalAuthorName":"仵亚婷"},{"authorName":"汤义武","id":"8e58a0bc-2e89-496b-9266-bc4378ebd169","originalAuthorName":"汤义武"},{"authorName":"沈彬","id":"0886d366-8d13-4e94-832e-b471ba1ea181","originalAuthorName":"沈彬"},{"authorName":"刘磊","id":"0d1de698-f02a-461e-89bd-ae69b2dd7e38","originalAuthorName":"刘磊"},{"authorName":"胡文彬","id":"afdf5255-1fed-47bd-bd5e-43d3b659b238","originalAuthorName":"胡文彬"}],"doi":"10.3969/j.issn.1000-3738.2004.11.001","fpage":"1","id":"414c7e63-7ade-4be5-b0df-3f9e516cb28e","issue":"11","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"ae9bea8d-8c20-4eb4-bec2-ee826e9dfbf0","keyword":"稳定剂","originalKeyword":"稳定剂"},{"id":"abf2c844-884e-411f-9631-dde605a59555","keyword":"吸附理论","originalKeyword":"吸附理论"},{"id":"543e8fa1-cfeb-4585-848f-c41c54e0f399","keyword":"吸附模型","originalKeyword":"吸附模型"}],"language":"zh","publisherId":"jxgccl200411001","title":"化学镀镍溶液稳定剂及其作用机理","volume":"28","year":"2004"},{"abstractinfo":"研究了腐植酸对硒(Ⅳ)的吸附行为,探讨了固液比、时间、pH、浓度、温度对吸附的影响,发现物理吸附与化学吸附并存,其吸附平衡服从Freundlich模型,导出Freundlich的吸附等温方程q=kc1.02,并推出吸附热ΔH=-17.8 kJ·mol-1.","authors":[{"authorName":"邹光中","id":"932573a2-6bea-47b1-95fc-b9c71bffa93a","originalAuthorName":"邹光中"},{"authorName":"任海清","id":"ee3af6b9-bc36-4a2e-8bcc-0f87e1751b57","originalAuthorName":"任海清"}],"doi":"10.3969/j.issn.0258-7076.2003.03.024","fpage":"413","id":"2f1bfbab-5bce-4a37-b648-eae5ab76a5b7","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"c3592882-4b1d-4393-8d2f-5bfa8ed7d2bb","keyword":"腐植酸","originalKeyword":"腐植酸"},{"id":"df77e858-7bb9-420f-a8e4-b4fc1b4e1905","keyword":"硒","originalKeyword":"硒"},{"id":"9daf2c4f-5a75-4273-a8b8-2e8728e96fb1","keyword":"吸附","originalKeyword":"吸附"}],"language":"zh","publisherId":"xyjs200303024","title":"腐植酸与硒的吸附模型研究","volume":"27","year":"2003"},{"abstractinfo":"研究了吸附-扩散模型(ADM)与溶解扩散模型(SDM)及其修正模型的相互关系,对溶解-扩散模型(SDM)、扩展-溶解扩散模型(ESDM)、不完全的溶解扩散模型(SDIM)中参数作了进一步解释.吸附-扩散模型(ADM)的一级近似表达式与溶解-扩散模型(SDM)及其修正模型的数学形式和物理意义相似,验证了吸附-扩散模型(ADM)的正确性.","authors":[{"authorName":"郭宇彬","id":"d80f474b-198c-49b2-986f-5bcf36f5fc60","originalAuthorName":"郭宇彬"},{"authorName":"许振良","id":"9da0ad3c-bdd3-4eb0-8591-9f174db67245","originalAuthorName":"许振良"},{"authorName":"姬朝青","id":"a6d1715d-c5e0-45d0-9af0-dbafee299284","originalAuthorName":"姬朝青"}],"doi":"10.3969/j.issn.1007-8924.2010.02.006","fpage":"29","id":"ac51336d-6c0f-4fe3-a902-75b9f8f30b3a","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"8b64c4fc-7c20-42e1-a67e-68b044f41cd2","keyword":"吸附-扩散模型","originalKeyword":"吸附-扩散模型"},{"id":"30e1c0e9-0330-44d1-94ab-63b10505dc87","keyword":"溶解-扩散模型","originalKeyword":"溶解-扩散模型"},{"id":"2a85532a-a1c9-4260-909c-814be382bff0","keyword":"扩展-溶解扩散模型","originalKeyword":"扩展-溶解扩散模型"},{"id":"1f051a69-44ae-4c0c-b9dc-227f408281dc","keyword":"不完全的溶解扩散模型","originalKeyword":"不完全的溶解扩散模型"}],"language":"zh","publisherId":"mkxyjs201002006","title":"吸附-扩散模型与溶解-扩散模型及其修正模型的相互关系","volume":"30","year":"2010"}],"totalpage":2518,"totalrecord":25176}