欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(3)
  • 图书()
  • 专利()
  • 新闻()

Water Modeling of a Swirling Flow Tundish for Steel Continuous Casting

YUE Qiang

钢铁研究学报(英文版)

A conventional turbulence inhibitor is compared with a swirling chamber from the points of view of fluid flow and removal rate of inclusion in the tundish. Comparing the RTD curves, inclusion removals, and the streamlines in water model experiments, it can be found that the tundish equipped with a swirling chamber has a great effect on improving the flow field, and the floatation rate of inclusion is higher than the tundish with a turbulence inhibitor. Because of the introduction of the swirling chamber, the flow field and inclusion removal in a two-strand swirling flow tundish is asymmetrical. Rotating the inlet direction of swirling chamber 60 degree is a good strategy to improve the asymmetrical flow field.

关键词: water model experiment;flow field;swirling chamber;inclusion removal;continuous casting tundish

Aggregation Kinetics of Inclusions in Swirling Flow Tundish for Continuous Casting

YUE Qiang , ZOU Zong-shu , et al

钢铁研究学报(英文版)

The mechanism of inclusion aggregation in liquid steel in swirling flow tundish is analyzed by applying the theory of flocculation which was developed in the field of colloid engineering. The gas bridge forces due to the micro bubbles on hydrophobic inclusion surfaces were considered responsible for the inclusion collision and agglomeration, which can avoid the aggregation to breakup. The quantity of micro bubbles on hydrophobic inclusion particle is more than that on hydrophilic one. The trend of forming gas bridges between micro bubbles on particles is strong in the course of collision. The liquid film on hydrophobic particles is easy to break during collision process. Hydrophobic particles are liable to aggregate in collision. According to the analysis of forces on a non-metallic inclusion particle in swirling chamber, the chance of inclusion collision and aggregation can be improved by the centripetal force. Hydrophobic particles in water are liable to aggregate in collision. Hydrophilic particles in water are dispersed although collision happens. The wettabiliy can be changed by changing solid-liquid interface tension. The non-metallic inclusion removal in swirling flow tundish is studied. It shows that, under certain turbulent conditions, the particle concentration and the wettability between particles and liquid steel are the main factors to induce collision and aggregation.

关键词: collision and aggregation;wettability;inclusion;swirling chamber;continuous casting tundish

Some Problems of Recycling Industrial Materials

CAI Jiuju , LU Zhongwu , YUE Qiang

钢铁研究学报(英文版)

The industrial system should learn from the natural ecosystem. The resource utilization efficiency should be increased and the environmental load should be decreased, depending on the materials recycled in the system. The classification of industrial materials from the viewpoint of largescale recycling was stated. Recycling of materials, on three different levels, was introduced in the industrial system. The metal flow diagram in the life cycle of products, in the case of no materials recycled, materials partially recycled, and materials completely recycled, was given. The natural resource conservation and the waste emission reduction were analyzed under the condition of materials completely recycled. The expressions for the relation between resource efficiency and material recycling rate, and the relation between ecoefficiency and material recycling rate were derived, and the curves describing the relationship between them were protracted. The diagram of iron flow in the life cycle of iron and steel products in China, in 2001, was given, and the iron resource efficiency, material recycling rate, and iron ecoefficiency were analyzed. The variation of iron resource efficiency with the material recycling rate was analyzed for two different production ratios.

关键词: recycling;industrial material;product life cycle;resource efficiency;ecoefficiency;material recycling rate

出版年份

刊物分类

相关作者

相关热词