欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(36)
  • 图书()
  • 专利()
  • 新闻()

Mechanical and Transformation Behaviors of a C-Mn-Si-Al-Cr TRIP Steel under Stress

Xiaodong WANG , Baoxu HUANG , Yonghua RONG , Li WANG , null , null , null , null

材料科学技术(英文)

Transformation induced plasticity (TRIP) steels combine high strength and excellent ductility, making them suited for application in crash-relevant parts in the automotive industry. However, the high Si contents in the conventional TRIP steel will generate surface defects on the hot rolled strip, which is difficult to process in continuous galvanizing lines. In order to solve the above problem the TRIP steel with the addition of Al replacing majority of Si was designed. In the present paper, the volume fraction of various phases in a C-Mn-Si-Al-Cr TRIP steel was determined by metallographic examination and X-ray diffraction analysis, and the multi-phase microstructures were characterized using an atomic force microscope based on their height difference. Tensile tests were performed at different temperatures ranging from -40℃ to 90℃. The results show that transition temperature MSσ in the present TRIP steel cannot be determined due to its lower volume fraction of retained austenite, different from the conventional TRIP steel. While the yield stress and tensile strength at different temperatures are higher than those of the conventional TRIP steel, which is attributed to the addition of Cr. In order to evaluate the effect of martensitic transformation on the total elongation, the sample without retained austenite obtained by quenching in liquid nitrogen was carried out under tensile test. The results indicate that the elongation of the original sample containing 9% retained austenite is about 20% higher than that of the sample quenched in liquid nitrogen, which demonstrates that the retained austenite plays an important role in improving the elongation of the TRIP steel.

关键词: TRIP steel , steel , mechanical , properties , retaine

Mechanical, Thermal, Morphological and Rheological Properties of Polypropylene/Ultrahigh Molecular Weight Polyethylene Blends

Xiaodong WANG , Riguang JIN and Hangquan LI (Beijing University of Chemical Technology , Beijing , 100029 , China)

材料科学技术(英文)

In this study, the blends of polypropylene (PP) and ultrahigh molecular weight polyethylene (UHMWPE) were prepared by the four-and twin-screw extruders, and ethylene-propylene-diene monomer (EPDM), as the third component, was added to the binary blends. The mechanical.thermal, morphological and rheological properties of these two blends have been investigated.For the materials blended by the four-screw extruder, a 15 wt-% content of UHMWPE corresponds to a maximum lzod impact strength, and the miscibility enhancement effect of EPDM on PP/UHMWPE blends is very remarkable. Mechanical and thermal properties demonstrate that melt blending by the four-screw extruder is a better prcessing method for PP/UHMWPF blends than that by the twin-screw extruder. A co-continuous structure was observed in blends through TEM, and a novel "linear interpenetrating" toughening mechanism is proposed on the basis of this research work

关键词:

Determination of Electronic States in Organic Ferromagnet

Xiaodong WANG , Rongtang FU , Xiaohua XU , Xin SUN

材料科学技术(英文)

The electronic features in a proposed organic ferromagnet is presented by the first-principle scheme. A specific p band is dominant in this organic ferromagnet.

关键词:

Study on the miscibility and phase behavior of polyoxymethylene with Novolak

Xiaodong WANG , Hangquan LI , Riguang JIN

材料科学技术(英文)

The miscibility and phase behavior of the blends of polyoxymethylene (POM)/Novolak were investigated by the cloud point method, which showed that the POM/Novolak blends exhibited a lower critical solution temperature. The melting point of POM decreased when diluted with Novolak. From the melting temperature depression of POM, a negative interaction parameter (chi) between POM and Novolak was obtained. The IR spectrum revealed that the miscibility between POM and Novolak was caused by the specific interaction between the OH groups of Novolak and the ether oxygen atoms of POM. The morphology of the blends investigated by polarized light microscopy showed that the size of spherulites of POM was sharply decreased by its mixing with Novolak. This suggests that Novolak be used as a compatibilizer for POM.

关键词:

Two-step magnetization in a spin-chain system on the triangular lattice: Wang-Landau simulation

Physical Review B

The Wang-Landau algorithm is used to study the thermodynamic and magnetic properties of triangular spin-chain system based on two-dimensional Ising model in order to understand the magnetic-order dynamics in Ca(3)Co(2)O(6) compound. The calculated results demonstrate that the equilibrium state of the rigid spins produces the two-step magnetization curve at low temperature even when the random-exchange term is considered. This work indicates that the four-step magnetization behavior observed experimentally must be due to the nonequilibrium magnetization.

关键词: calcium compounds;exchange interactions (electron);Ising model;magnetisation;thermodynamics;one-dimensional ca3co2o6;density-of-states;compound ca3co2o6;phase-diagram;proteins;crystal

Ion sputter erosion in metallic glass-A response to "Comment on: Homogeneity of Zr(64.13)Cu(15.75)Ni(10.12)Al(10) bulk metallic glass" by L-Y. Chen, Y-W. Zeng, Q-P. Cao, B-J. Park, Y-M. Chen, K. Hono, U. Vainio, Z-L. Zhang, U. Kaiser, X-D. Wang, and J-Z Jiang J. Mater. Res. 24, 3116 (2009)

Journal of Materials Research

The morphology of the dark and bright regions observed by transmission electron microscopy for the Zr(64.13)Cu(15.75)Ni(10.12)Al(10) bulk metallic glass strongly depends on the ion beam parameters used for ion milling. This indicates that the ion beam could introduce surface fluctuation to metallic glasses during ion milling.

关键词: room-temperature

Effect of interstitial hydrogen on cohesive strength of Al grain boundary with Mg segregation

材料科学技术(英文)

The effect of interstitial hydrogen on the cohesion of the Al Sigma=11(113) grain boundary (GB) is investigated based on the thermodynamic model of Rice-Wang using the first-principles density function calculation. The results indicate that interstitial H behaves as an embrittler from "strengthening energy" analysis. The reduced GB cohesion due to the presence of H at the GB is attributed to the low affinity between H and Al, and the weakened bonding of Al atomic pairs perpendicular to GB plane.

关键词: hydrogen;grain boundary;Al-Mg alloys;pseudopotentials;1st-principles

Effect of Interstitial Hydrogen on Cohesive Strength of Al Grain Boundary with Mg Segregation

Xiaoguang LIU , Xiaowei WANG

材料科学技术(英文)

The effect of interstitial hydrogen on the cohesion of the Al ∑=11(113) grain boundary (GB) is investigated based on the thermodynamic model of Rice-Wang using the first-principles density function calculation. The results indicate that interstitial H behaves as an embrittler from "strengthening energy" analysis. The reduced GB cohesion due to the presence of H at the GB is attributed to the low affinity between H and Al, and the weakened bonding of Al atomic pairs perpendicular to GB plane.

关键词: Hydrogen , null , null

First-principles study on the effect of Mn and N on the cohesion of a gamma-iron grain boundary

Physical Review B

By use of the linear-combination-of-atomic-orbital (LCAO) method for a cluster model, we studied the electronic structure of gamma-from Sigma 11 [1 (1) over bar0](11 (3) over bar) grain boundary doping with N and Mn atoms. The effect of the segregation on the cohesion of the grain boundary is investigated based on the Rice-Wang thermodynamic model. It is found that N could not only largely enhance the cohesion of the grain boundary but also eliminate the detrimental effect of Mn. The cosegregation effect of Mn and N on the cohesion of the grain boundary depends on where they segregate. Nitrogen could be reliably used in alloyed steels as an efficient strengthening element.

关键词: electronic-structure;phosphorus segregation;stainless-steel;embrittlement;austenite;nitrogen;boron;impurities;fracture;metals

First-principle study of electronic properties of Ti3Si1-xAlxC2 solid solutions

Journal of Physics and Chemistry of Solids

The layered ternary ceramics Ti3SiC2 and Ti3AlC2 are isostructural and can form Ti3Si1-xAlxC2 solid solutions combining the advanced properties of both compounds [H.B. Zhang, Y.C. Zhou, Y.W. Bao, M.S. Li, Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.90Al0.1C2 solid solution, Acta Mater. 52 (2004) 3631-3637; E.D. Wu, J.Y. Wang, H.B. Zhang, Y.C. Zhou, K. Sun, Y.J. Xue, Neutron diffraction studies of Ti3Si0.9Al0.1C2 compound, Mater. Lett. 59 (2005) 2715-2719; J.Y. Wang, Y.C. Zhou, First-principles study of equilibrium properties and electronic structure of Ti3Si0.75Al0.25C2 solid solution, J. Phys.: Condens. Matter 15 (2003) 5959-5968; Y.C. Zhou, J.X. Chen, J.Y. Wang, Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1-xSixC2 solid solutions, Acta. Mater. 54 (2006) 1317-1322]. In the present work, the solid solutions of Ti3Si1-xAlxC2 (x = 0, 0.25, 0.33, 0.5, 0.67, 0.75, 1) are investigated by first-principle calculations based on pseudo-potential plan-wave method within the density functional theory framework. The results show that as Al content increases in the solid solution, all the bonds have weakened to certain extents, which lead to an unstable structure both energetically and geometrically. The calculated results are compared and discussed with the reported data for the Ti3Si1-xAlxC2 solid solutions. (c) 2007 Elsevier Ltd. All rights reserved.

关键词: ceramics;ab initio calculations;electronic structure;electrical;conductivity;oxidation behavior;mechanical-properties;ti3sic2;temperature;ti3alc2;air;si

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 下一页
  • 末页
  • 共4页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词