Xianping DONG
,
Jiansheng WU
材料科学技术(英)
Crystallization behavior of amorphous Cr-Si-Ni thin films was investigated by means of high temperature in situ X-ray diffraction measurements. The diffraction spectra were recorded isothermally at temperature between 250 and 750 degreesC. The in situ testing of crystallization enables the direct observation of structure evolution which is dependent on heat treatment. Based on the testing results, the grain sizes of the crystalline phases were compared and phase transition tendency was understood. In the mean time, electrical properties of the films as functions of annealing temperature and time have been studied. The increase of volume fraction of CrSi2 crystalline phases in the Cr-Si-Ni films leads to the decrease in conductivity of the films. The annealing behavior of temperature coefficient of resistance (TCR) is a result of competition between a negative contribution caused by the weak localization effects in amorphous region and a positive contribution caused by CrSi2 grains. Thus the proper mixture of amorphous and crystalline constituents could result in a final zero TCR.
关键词:
Physical Review B
In a recent publication [S. Dong et al., Phys. Rev. Lett. 103, 127201 (2009)], two (related) mechanisms were proposed to understand the intrinsic exchange bias present in oxides heterostructures involving G-type antiferromagnetic perovskites. The first mechanism is driven by the Dzyaloshinskii-Moriya interaction, which is a spin-orbit coupling effect. The second is induced by the ferroelectric polarization, and it is only active in heterostructures involving multiferroics. Using the SrRuO(3)/SrMnO(3) superlattice as a model system, density-functional calculations are here performed to verify the two proposals. This proof-of-principle calculation provides convincing evidence that qualitatively supports both proposals.
关键词:
thin-films;weak ferromagnetism;superlattices;anisotropy;bifeo3;srruo3;model