{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"将炭粉与空气按比例预混后在栽流气体发生器中燃烧生成N~2+CO_2混合气体是经济制备气体保护用栽流气体的一种新方法.对发生器中连续进行的空气-炭粉两相流燃烧进行了数值仿真分析,并采用正交方法对反应器直径、反应器高度、炭粉粒度和空气过剩系数这4个主要参数进行了优化,结果表明,当炭粉粒度为100~250μm、反应器高度为1000mm、反应器直径为200mm、空气过剩系数为1.05时,燃烧反应程度最理想.","authors":[{"authorName":"游国强","id":"349a9c0a-4802-46c8-9cd0-602ef4e112ff","originalAuthorName":"游国强"},{"authorName":"刘汉周","id":"06d30363-732b-46f3-a705-a853d91a2a03","originalAuthorName":"刘汉周"},{"authorName":"李爱听","id":"7bb4e7f8-5214-4e00-8d55-4b986fcb0916","originalAuthorName":"李爱听"},{"authorName":"龙思远","id":"bd56784b-1b05-44c7-9c29-395a9446af7e","originalAuthorName":"龙思远"}],"doi":"","fpage":"73","id":"45d5e5ab-5c7f-4b08-a734-c30f7e1dbc57","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"77bfec93-fa4a-4d34-85a1-b01d9e8607ac","keyword":"燃烧","originalKeyword":"燃烧"},{"id":"75839ea9-b59f-48ee-8c8c-c7944d514545","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"9e8b1ed9-06d7-4d8b-ab72-aa1efbcaca4e","keyword":"优化","originalKeyword":"优化"},{"id":"f9d8c18d-dd9c-4384-81e0-fde08861ec9d","keyword":"载流气体发生器","originalKeyword":"载流气体发生器"},{"id":"fcdb138e-57c0-486a-8868-23ead78ad2b7","keyword":"","originalKeyword":"镁熔体"},{"id":"6c198b9f-719d-4bd9-9038-fef7e1b5421c","keyword":"保护","originalKeyword":"保护"}],"language":"zh","publisherId":"cldb200920023","title":"保护用气体发生器的燃烧数值模拟及优化","volume":"23","year":"2009"},{"abstractinfo":"用热重法测定了在1,1,1,2-四氟乙烷(HFC-134a)与空气混合气体保护下的氧化动力学曲线,用X射线衍射仪和能谱仪分析了氧化膜中氧化产物组成和元素成分,讨论了氧化机理并提出了一个氧化模型.结果表明:的高温氧化行为与HFC-134a的浓度有关.HFC-134a浓度较低时,氧化膜主要由MgO组成,氧化过程表现出线性动力学的特征.HFC-134a浓度较高时,氧化膜主要由MgF2组成,氧化过程遵循抛物线规律.随着混合气体中HFC-134a浓度的增加,的氧化速率减小.体温度对氧化行为也有一定的影响.","authors":[{"authorName":"陈虎魁","id":"74cee90c-c6a0-4c4c-86ac-d768c413456e","originalAuthorName":"陈虎魁"},{"authorName":"刘建睿","id":"a6b0c406-a5aa-4b56-9c70-f69c910efc14","originalAuthorName":"刘建睿"},{"authorName":"黄卫东","id":"c02901ad-e188-4c59-8667-4001ec552051","originalAuthorName":"黄卫东"}],"doi":"10.3321/j.issn:0412-1961.2007.06.014","fpage":"625","id":"d7f56fc0-3e40-41cc-beec-e6bf1b9d8dd3","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"d1dcda1b-005f-487d-a616-783a6ef81f41","keyword":"","originalKeyword":"镁熔体"},{"id":"c57eec1d-1d79-4ad9-95aa-42f6eb4b4112","keyword":"氧化动力学","originalKeyword":"氧化动力学"},{"id":"aafd5c11-4f52-467e-bf78-d469c8ea1d05","keyword":"机理","originalKeyword":"机理"},{"id":"9b3b8778-7134-4f94-9ffc-3d31d2b280cb","keyword":"CF3CH2F(HFC-134a)","originalKeyword":"CF3CH2F(HFC-134a)"}],"language":"zh","publisherId":"jsxb200706014","title":"在空气/HFC-134a气氛中的高温氧化特性及机理分析","volume":"43","year":"2007"},{"abstractinfo":"对在HFC-134a/空气混合气体中和HFC-134a/CO2混合气体中的氧化行为进行了比较研究.结果发现,在这2种混合气体中的氧化行为存在差异,而且这种差异与HFC-134a的浓度有关.当混合气体中HFC-134a浓度较高时,在HFC-134a/CO2混合气体中的氧化速度小于HFC-134a/空气混合气体,差别不是很大;然而,当混合气体中HFC-134a浓度较低时,在HFC-134a/CO2混合气体中的氧化速度远小于HFC-134a/空气混合气体中的氧化速度.产生差异的原因可能与氧化膜中MgF2和MgO的相对含量有关,也可能与单质的C含量有关.这一结果表明,在HFC-134a浓度保持不变的情况下,把与HFC-134a混合的稀释气体由空气改变为CO2,可提高混合气体的保护效果,尤其是在HFC-134a浓度较低的情况下.","authors":[{"authorName":"陈虎魁","id":"a54d6b5f-eb6e-4079-ac6a-7ef5d6331892","originalAuthorName":"陈虎魁"},{"authorName":"刘建睿","id":"3ee88cf3-5e00-42cb-be2e-a8396aa59e4c","originalAuthorName":"刘建睿"},{"authorName":"黄卫东","id":"56e1b75e-5add-4b93-9129-37cf8d538e49","originalAuthorName":"黄卫东"}],"doi":"","fpage":"1913","id":"c6dd1748-ecd8-4721-8130-6c780807c0a2","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"8b1d4021-57b6-4e26-bd37-e9324e8ad6dd","keyword":"","originalKeyword":"镁熔体"},{"id":"85007d27-56d2-4727-8ee2-383d8df31236","keyword":"氧化","originalKeyword":"氧化"},{"id":"f36b429a-5e9f-4528-9678-46a58c7f23a2","keyword":"HFC-134a","originalKeyword":"HFC-134a"},{"id":"a332dc40-1e8e-4c7e-b0ed-44213ad311f9","keyword":"CO2","originalKeyword":"CO2"}],"language":"zh","publisherId":"xyjsclygc200811007","title":"稀释气体对在HFC-134a气氛中高温氧化行为的影响","volume":"37","year":"2008"},{"abstractinfo":"研究了在1,1,1,2-四氟乙烷(HFC-134a)与空气混合气体保护下的高温氧化特性。用热重法测定了氧化动力学曲线,用X-射线衍射仪和能谱仪分析了氧化膜中氧化产物组成和元素成分,讨论了氧化机理并提出了一个氧化模型。结果表明:在HFC-134a与空气混合气体中的高温氧化行为与HFC-134a的浓度有关。在HFC-134a浓度较低的混合气体中,氧化膜主要由MgO组成,氧化过程表现出线性动力学的特征。在HFC-134a浓度较高的混合气体中,氧化膜主要由MgF2组成,氧化过程遵循抛物线规律。随着混合气体中HFC-134a浓度的增加,的氧化速度减小。体温度对氧化行为也有一定的影响。","authors":[{"authorName":"陈虎魁","id":"7c39de08-9a30-4cb4-9bc9-9f91ddd8ebf2","originalAuthorName":"陈虎魁"},{"authorName":"刘建睿","id":"9c6cd532-4d28-43a0-96d1-ef1d65851ece","originalAuthorName":"刘建睿"},{"authorName":"黄卫东","id":"10ef0000-89eb-4e9e-885e-830f96a1e57c","originalAuthorName":"黄卫东"}],"categoryName":"|","doi":"","fpage":"625","id":"c468429a-c4ea-489e-bd37-4ea11565b86d","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"0666a2fa-8a9b-4ec8-a605-719cffe0c43e","keyword":"","originalKeyword":"镁熔体"},{"id":"a54f39f7-3695-492e-b0b7-216a7f8e4f2e","keyword":"oxidation kinetics","originalKeyword":"oxidation kinetics"},{"id":"a9aedcfa-5d57-4ff5-93a2-06d76482a387","keyword":"mechanism","originalKeyword":"mechanism"},{"id":"e3f905ab-76c1-4327-9aa8-9ae28da7cbe8","keyword":"HFC-134","originalKeyword":"HFC-134"}],"language":"zh","publisherId":"0412-1961_2007_6_19","title":"在空气/HFC-134a气氛中的高温氧化特性及机理分析","volume":"43","year":"2007"},{"abstractinfo":"为了降低ZrB2粉的合成温度,并在此基础上合成粒径细小、纯度高的ZrB2粉,以ZrO2及B4C为原料,以Mg粉为还原剂,以NaCl-KCl为盐介质,研究热还原法低温合成ZrB2超细粉的工艺.探讨了反应温度、B/Zr物质的量比及Mg粉用量对合成ZrB2超细粉的影响,并对粉的物相组成及显微结构进行了表征.结果表明合成ZrB2的起始温度为1 173 K, 最佳合成温度为1 473 K.合成纯相的ZrB2粉最佳工艺条件为:B/Zr物质的量比为2.2,Mg过量50%(质量分数),1 473 K反应3 h.所合成ZrB2粉的晶粒尺寸为30~300 nm.","authors":[{"authorName":"谭操","id":"a29ee4dc-eda4-4607-bcb1-88dd7b984be1","originalAuthorName":"谭操"},{"authorName":"段红娟","id":"5ed1bb37-3385-47c8-9634-2eb07b935640","originalAuthorName":"段红娟"},{"authorName":"王军凯","id":"314ef796-7dda-403c-bb16-a1290e1c83fb","originalAuthorName":"王军凯"},{"authorName":"张海军","id":"b3ebe12a-5c8e-45ef-8848-812374f86873","originalAuthorName":"张海军"},{"authorName":"刘江昊","id":"3349b80f-6c7a-4f75-9007-35e45bcf0174","originalAuthorName":"刘江昊"}],"doi":"10.11896/j.issn.1005-023X.2017.08.022","fpage":"109","id":"3d3815f8-4843-43ca-b75d-cbfcbd696d02","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ee486579-80aa-455f-abdb-6f659c71a138","keyword":"ZrB2","originalKeyword":"ZrB2"},{"id":"c2ceff39-cc97-493a-905f-b7faddec9e1b","keyword":"超细粉","originalKeyword":"超细粉体"},{"id":"b1e534c8-3b7a-44d2-8e81-358a71cbf190","keyword":"盐","originalKeyword":"熔盐"},{"id":"1e91dfea-2c70-4649-a69f-e110b60beee9","keyword":"热还原","originalKeyword":"镁热还原"}],"language":"zh","publisherId":"cldb201708023","title":"热还原法合成ZrB2超细粉","volume":"31","year":"2017"},{"abstractinfo":"在氩气中,以纳米SiO2、炭黑为原料,金属镁粉为还原剂,在NaCl,KCl等盐中发生还原反应及硅碳反应制备出SiC粉.研究了温度、盐的种类等条件对合成SiC粉的影响.通过X衍射分析仪、场发射扫描电镜、激光粒度仪、比表面积分析仪等对合成的SiC粉进行了表征.结聚表明,800℃时已有SiC粉生成;选用KCl为盐在1000℃时合成了D50为1.057 μm,比表面积54.88m2/g的高纯SiC粉.","authors":[{"authorName":"丁娟","id":"faea7551-5537-4a3c-9e7a-f1a433527bc8","originalAuthorName":"丁娟"},{"authorName":"王周福","id":"a57c0472-6d3d-4464-9bf3-1d9874b21ea9","originalAuthorName":"王周福"}],"doi":"10.3969/j.issn.1001-4381.2010.z2.036","fpage":"130","id":"ec8b23da-f2c9-4fcb-9238-b7d6549bc2a5","issue":"z2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"879db688-e948-4964-b3c9-fd481a4e2c12","keyword":"SiC","originalKeyword":"SiC"},{"id":"4c5318e3-7750-4cee-a8bb-e2d0d79fac69","keyword":"热还原","originalKeyword":"镁热还原"},{"id":"d8f48e03-2a88-4dd5-b004-99182acf8ae3","keyword":"盐","originalKeyword":"熔盐"},{"id":"6346c5ff-9997-4e3e-be6e-cd2655e4a6ad","keyword":"粉","originalKeyword":"粉体"}],"language":"zh","publisherId":"clgc2010z2036","title":"盐中的热还原法合成制备SiC粉的研究","volume":"","year":"2010"},{"abstractinfo":"采用浸渗法制备了Mg/Al2O3复合材料,利用X射线衍射、扫描电镜、金相显微镜等测试手段对其微观组织结构和力学性能进行了表征,并对试样断裂韧性和耐磨性进行了研究.结果表明:浸渗法制备的Mg/Al2O3复合材料具有双连续相网络结构,且界面结合良好;随着Mg含量的减少,复合材料断裂韧性降低、耐磨性大幅度提高.","authors":[{"authorName":"王志","id":"11fdef3c-2b7e-4cf5-99db-d76004f05def","originalAuthorName":"王志"},{"authorName":"何兆晶","id":"d0d44a6c-4159-46ef-9de7-d64e068616fe","originalAuthorName":"何兆晶"},{"authorName":"李宏林","id":"6fb27317-5bff-439d-9822-ab5fe4c2f565","originalAuthorName":"李宏林"},{"authorName":"俎全高","id":"abdbf4fb-a045-4340-b29b-982f83c05ca1","originalAuthorName":"俎全高"},{"authorName":"史国普","id":"14029923-ff27-4e9a-817e-210f4a03ba6e","originalAuthorName":"史国普"}],"doi":"","fpage":"146","id":"c0b7fd8e-1fd4-4c03-bc16-2c3ec065f556","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e23fdbf9-6b08-49e4-85e0-99bebcf0cbed","keyword":"浸渗法","originalKeyword":"熔体浸渗法"},{"id":"b5f8042a-8da0-4811-b659-8d44194d1341","keyword":"Mg/Al2O3复合材料","originalKeyword":"Mg/Al2O3复合材料"},{"id":"74e5a220-9602-47b5-a4cc-a60a0145893b","keyword":"组织","originalKeyword":"组织"},{"id":"fa644ade-932f-4107-b67a-34cba4e82c17","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"cldb200608041","title":"浸渗法制备/氧化铝复合材料","volume":"20","year":"2006"},{"abstractinfo":"为了在较低温度和较短时间内合成h-BN 粉,以硼砂和镁粉为原料,以n(NaCl)n(MgCl2)分别为13、11和31的3种NaCl-MgCl2和n(KCl)n(MgCl2)为11的KCl-MgCl2为盐介质,在氮气气氛中分别于800、1000和1200℃保温3 h,采用热还原法合成h-BN,经5%(w)的盐酸溶液浸泡、抽滤、洗涤、干燥、研磨后得到产物粉,并进行XRD和SEM分析,研究了不同种类和配比的盐介质及合成温度对合成产物的物相组成和显微结构的影响。结果表明:1)在本试验的不同盐介质和不同温度下合成的产物粉均由纯相h-BN组成,但h-BN的结晶度随合成温度的升高而逐渐提高:在NaCl-MgCl2盐介质中于1000℃制备的产物中有片状h-BN,在1200℃出现层叠层片状h-BN,而在KCl-MgCl2盐介质中于1200℃才有片状h-BN。2)在NaCl-MgCl2盐中通过热还原法合成h-BN粉,不仅克服了其他方法合成温度高的缺陷,同时还有效地控制了h-BN晶粒的尺寸和形貌。","authors":[{"authorName":"向涛","id":"28ecf8b9-49a9-40b2-919c-072b374c1575","originalAuthorName":"向涛"}],"doi":"10.3969/j.issn.1001-1935.2016.03.011","fpage":"204","id":"56e6b8ca-9ae3-4554-ad9d-fef766353072","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"98459fa9-b641-4fcb-9583-38bef0895324","keyword":"盐法","originalKeyword":"熔盐法"},{"id":"aa33846f-4f1e-4d1c-b526-abe432d15aa3","keyword":"热还原法","originalKeyword":"镁热还原法"},{"id":"e2d2b8b6-4cdf-488e-9642-6027a36e6a36","keyword":"六方氮化硼","originalKeyword":"六方氮化硼"},{"id":"deb0fb90-535e-4788-b488-6b931ba7ab1d","keyword":"粉合成","originalKeyword":"粉体合成"}],"language":"zh","publisherId":"nhcl201603012","title":"盐介质和合成温度对热还原法合成h-BN粉的影响","volume":"50","year":"2016"},{"abstractinfo":"对铝除氢的基础理论和各种除氢技术的发展现状进行了相应的综述,在综述过程中对我们近来的一些工作也给予了相应的总结.并指出了现有技术的不足继而提出了铝除氢的发展趋势.","authors":[{"authorName":"巫瑞智","id":"c25da480-5583-422f-a4e4-cdc9feabe458","originalAuthorName":"巫瑞智"},{"authorName":"孙宝德","id":"f622712d-b639-4dd1-9f6e-2148e6339b56","originalAuthorName":"孙宝德"},{"authorName":"疏达","id":"07a475f3-8037-4624-8c17-ac410e7da2bd","originalAuthorName":"疏达"},{"authorName":"李飞","id":"6a387a91-f2e4-4c72-a13f-8e36c0b3e9ec","originalAuthorName":"李飞"},{"authorName":"陈海(龙天)","id":"2564df37-c3b8-4241-a731-7d7aed0b24c8","originalAuthorName":"陈海(龙天)"},{"authorName":"陆燕玲","id":"98be164a-9afe-4970-a717-608f338408ec","originalAuthorName":"陆燕玲"},{"authorName":"王俊","id":"83121e28-2411-4207-a995-255cb07bfc46","originalAuthorName":"王俊"}],"doi":"10.3969/j.issn.1005-0299.2006.02.030","fpage":"218","id":"63f139aa-4692-4624-ae52-2b833b722813","issue":"2","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"dd8ebb6b-f0a3-4248-866f-65ad22da1edf","keyword":"除氢","originalKeyword":"除氢"},{"id":"545da67c-e11c-4f05-90d3-280012cdcb51","keyword":"除氢理论","originalKeyword":"除氢理论"},{"id":"dc47d5c4-9406-434e-86f6-a5bce03a1979","keyword":"扩散","originalKeyword":"扩散"},{"id":"97ca94ac-1a71-4974-a079-24ff4b8c9e65","keyword":"氢","originalKeyword":"氢"},{"id":"d7f9744c-be85-454d-b934-d5116b662b32","keyword":"铝","originalKeyword":"铝熔体"}],"language":"zh","publisherId":"clkxygy200602030","title":"铝除氢","volume":"14","year":"2006"},{"abstractinfo":"为克服粉末冶金法(PM)和铸造法(Casting)在制备基复合材料过程中的缺点,尝试采用低温反应自(RSM)新工艺制备颗粒增强基复合材料.经低温反应自制备的颗粒增强基复合材料,在一定程度上消除了粉颗粒的氧化膜,减小了对合金元素扩散的阻碍作用,使颗粒间的结合得到改善;SEM断口观察及X射线衍射物相分析表明,基体与增强界面处有轻微的反应存在,反应产物为MgTiO3,推测为MgO-Ti、Mg-TiO2或MgO-TiO2的反应所生成.","authors":[{"authorName":"曹利强","id":"58e9df2c-e0a7-43ef-9f2b-1a2207944965","originalAuthorName":"曹利强"},{"authorName":"柴东朗","id":"812aa7df-2c83-4445-9194-07e00c4ae0a0","originalAuthorName":"柴东朗"}],"doi":"10.3969/j.issn.1009-6264.2004.01.006","fpage":"20","id":"7388e2c5-f473-4435-80ba-d7b54553b3ed","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"76103625-63fb-45a6-bdc7-55c3d0ff26e6","keyword":"低温反应自(RSM)","originalKeyword":"低温反应自熔(RSM)"},{"id":"5bc55db1-3ff3-4a2a-8dc6-c4c79744619d","keyword":"基复合材料","originalKeyword":"镁基复合材料"},{"id":"0d6ee620-a07a-4d5f-ba15-2e37e3f58696","keyword":"界面反应产物","originalKeyword":"界面反应产物"}],"language":"zh","publisherId":"jsrclxb200401006","title":"低温反应自法制备基复合材料的新工艺","volume":"25","year":"2004"}],"totalpage":3212,"totalrecord":32119}