Jing TIAN
,
Xiang XUE
,
Yuebing ZHANG
,
Yalong GAO
,
Luzhi LIU
,
Qin SUN
,
Shiyou YUAN
材料科学技术(英文)
By adopting the solid modeling software SoldEdge and the enmeshment software SRIFCast as the pre-processing platform, a Ni based alloy turbine blade was three-dimensionally modeled and automatically enmeshed. A software code for numerical simulation of fluid flow and heat transfer was developed. The Xue criterion and Niyama criterion were used to predict the position of the shrinkage defects occurring in the solidification processes of the turbine blade. The results showed that both Xue and Niyama criteria could precisely predict the shrinkage defects in the Ni based alloy turbine blade. This indicates that numerical simulation is a significant tool in improving casting quality.
关键词:
X.B. Tian
,
X.F. Wang
,
A.G. Liu
,
L.P. Wang
,
S. Y. Wang
,
B. Y. Tang and P. K. Chu 1)Advanced Welding Production & Technology National Key Laboratory
,
Harbin Institute of Technology
,
Harbin 150001
,
China 2)Department of Physics & Materials Science
,
City University of Hong Kong
,
China
金属学报(英文版)
The research on plasma immersion ion implantation has been conducted for a little over ten years. Much is needed to investigate including processing technlogy, plasma sheath dynamics, interaction of plasma and surface, etc. Of the processing methods elavated temperature technique is usually used in PIII to produce a thick modified layer by means of the thermal diffusion. Meanwhile plasma ion heating is more recently developed by Ronghua Wei et al[1]. Therefore the temeperature is a critical parameter in plasma ion processing. In this paper we present the theoretical model and analysize the effect of imlantation voltage, plasma density, ion mass,etc on the temperature rise.
关键词:
plasma immersion ion implantation
,
null
,
null
夏小建
量子电子学报
doi:10.3969/j.issn.1007-5461.2009.06.010
采用Wei-Norman方法,求出含时变电压源的介观LC电路随时间演化的精确解,应用相空间准概率分布函数,研究了时变电源作用下介观LC电路相干态的量子特性,结果表明此函数是一个二维运动的Gauss波包,其中心电量和磁通呈余弦和正弦变化.
关键词:
量子光学
,
LC回路
,
介观电路
,
相干态
,
量子态演化
,
相空间的准概率分布函数
WEI Jihe Xi'an Institute of Metallurgy and Construction Engineering
,
China.
材料科学技术(英文)
The oxidation of alloying elements during the ESR of stainless steel has been studied. The model previously developed by WEI and Mitchell for the chemical reactions and mass transfer processes during ESR was applied to the remelting of the high Cr steel 1Cr18Ni9(Ti).The laboratory data for the unsteady state A.C.ESR were analyzed and dealt with by the model.When the remelting process reached a steady state,an oxidant(Fe_2O_3 powder)or a deoxidant(Ca-Si powder or metallic Ca)was added to the slag bath.The results showed that this model is applicable to the remelting of stainless steel rather precisely, and it is expected that the model may offer a reliable basis for the control of composition during practical ESR of high alloy steel. Also,the oxidation of Cr in the steel must be noticed when its content is high;but it is entirely possible to adjust the Cr content of ingot within a considerable range,using a special technique by means of the slag-metal reactions during the remelting.
关键词:
ESR
,
null
,
null
,
null
,
null
Journal of Physics and Chemistry of Solids
The layered ternary ceramics Ti3SiC2 and Ti3AlC2 are isostructural and can form Ti3Si1-xAlxC2 solid solutions combining the advanced properties of both compounds [H.B. Zhang, Y.C. Zhou, Y.W. Bao, M.S. Li, Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.90Al0.1C2 solid solution, Acta Mater. 52 (2004) 3631-3637; E.D. Wu, J.Y. Wang, H.B. Zhang, Y.C. Zhou, K. Sun, Y.J. Xue, Neutron diffraction studies of Ti3Si0.9Al0.1C2 compound, Mater. Lett. 59 (2005) 2715-2719; J.Y. Wang, Y.C. Zhou, First-principles study of equilibrium properties and electronic structure of Ti3Si0.75Al0.25C2 solid solution, J. Phys.: Condens. Matter 15 (2003) 5959-5968; Y.C. Zhou, J.X. Chen, J.Y. Wang, Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1-xSixC2 solid solutions, Acta. Mater. 54 (2006) 1317-1322]. In the present work, the solid solutions of Ti3Si1-xAlxC2 (x = 0, 0.25, 0.33, 0.5, 0.67, 0.75, 1) are investigated by first-principle calculations based on pseudo-potential plan-wave method within the density functional theory framework. The results show that as Al content increases in the solid solution, all the bonds have weakened to certain extents, which lead to an unstable structure both energetically and geometrically. The calculated results are compared and discussed with the reported data for the Ti3Si1-xAlxC2 solid solutions. (c) 2007 Elsevier Ltd. All rights reserved.
关键词:
ceramics;ab initio calculations;electronic structure;electrical;conductivity;oxidation behavior;mechanical-properties;ti3sic2;temperature;ti3alc2;air;si
金属学报(英文版)
桑危郑牛樱裕桑牵粒裕桑希巍。希啤。龋伲模遥希牵牛巍。桑危模眨茫牛摹。模眨茫裕桑蹋拧。拢遥桑裕裕蹋拧。裕遥粒危樱桑裕桑希巍。桑巍。罚保罚怠。粒蹋眨停桑危眨汀。粒蹋蹋希?##2##3##4##5INVESTIGATIONOFHYDROGENINDUCEDDUCTILEBRITTLETRANSITIONIN7175ALUMINUMALLOY$R.G.Seng:B.JZhong,MG.ZengandP.Geng(DepartmentofMaterialsScierce,ScienceCollege,NorthearsternUniveisity,Shenyang110006,ChinaMaruscriptreceived4September1995inrevisedform20April1996)Abstrac:Effectsofhydrogenonthemechanicalpropertiesofdifferentlyaged7175aluminumalloyswereinvestigatedbyusingcathodicH-permeation,slowstrainratetensionandsoon.Theresultsindicatethatboththeyieldstressandthepercentagereductionofareadecreasewithincreasinghydrogenchargingtime,andthedegreeofreductiondecreasesasagingtimeincreasesforthesamehydrogenchargingtime.Keywords:hydrogeninducedductile-brittletransition,7175aluminumalloy,mechanicalproperty,cathodicH-permeation1.IntroductionForalongtimehydrogenembrittlementproblemwasthoughttobeabsentinhighstrengthaluminiumalloybecausethesolutiondegreeofhydrogeninaluminumatcommontemperatureandpressureisverysmall.However,hydrogenembrittlementphenomenonwasfoundinaluminumalloyduringtheinvestigationofstresscorrosionandcorrosionfatigue[1-5].Therehavebeenonlyafewreportsofhydrogeninducedsofteningandhardening.Inthispaper,theeffectsofhydrogenonmechanicalpropertiesof7175aluminumalloywereinvestigatedbyusingcathodicalchargingwithhydrogenandslowtensiontests.2.ExperimentalProcedureTheexperimentalmaterialwas7175aluminumalloyforgingintheformofa43mminthicknessandwithcomposition(wt%).5.41Zn,2.54Mg.1.49Cu,0.22Cr,0.1Mn.0.1Ti,0.16Fe.0.11Si,balancedbyA1.Alloyplateof1.5mminthicknesswasobtainedbyhot(465℃)andtoldrollingto83%reductioninthickness.Thelongaxisofhydrogenchargedspecimensisalongtherollingdirection.Allspecimensweresolidsolutionedat480℃for70min,followedtyimmediatequenchinginwaterandthenagedat140℃for6h(A),16h(B)and98h(C).Thetreatmentof6hiscorrespondingtotheunderagedstate.16hthefirstpeak-agedstateand98hthesecondpeak-agedstate.Thespecimenswerepolishedsuccessivelyusingemerypaperbeforehydrogencharging.Thetensilespecimenswerecathodicallychargedina2NH_2SO_4solutionwithasmallamountofAs_2O_3forpromotinghydrogenabsorption,andwithacurrentdensityof20±1mA/cm ̄2atroomtemperature.ThehydrogencontentanalysiswascarriedoutonanLT-1Amodelionmassmicroprobeafterthesputteringdepthreached8nm.Theioncurrentsofhydrogenandaluminuminvariousagedstateswererecordedunderthesamecondition.ThetensiletestswereperformedonanAG-10TAmodeltestmachinewhichwascontrolledbycomputer.3.ExperimentalResultsTheratioofioncurrentstrengthofhydrogentoaluminumisrelatedtohydrogenconcentrationinhydrogenchargedspecimen.TheresultswereshowninTable1Thehydrogencontentincreaseswiththeincreaseincharingtime.Ofthethreeagedstates,theunderagedspecimenhasthehighesthydrogencontent.Theratioofyieldstrengthofhydrogenchargedandunchargedspecimenschangeswithhydrogenchargingtime,asshowninFig.1Itcanbeseenthattheyieldstrengthofhydrogenchargedspecimendecreasewithincreasinghydrogenchargingtime.Atthesamechargingtime,theyieldstressdecreasestheleastinthesecondpeak-agedstate,anddecreasesthemostintheunderagedstate.Itindicatesthattheunderagedspecimenismostsensitivetohydrogeninducedsoftening,whichisconsistentwiththeresultsofanotherhighstrengthaluminumalloy[6].TherelativechangesoftheradioofreductionofareawithhydrogenchargingtimearesummarizedinFig.2,whereΨ ̄0andΨ ̄Harethepercentagereductionofareaofthesamplewithoutandwithhydrogenchargingrespectively.Theradioofreductionofareareduceswhenhydrogenchargingtimeincreases,andthedecreasingdegreeofreductionofareaincreaseswithincreasingagingtime,ie,,theunderagedstateisthemostsensitivetohydrogenembrittlement.4.DiscussionItisknownfromtheresultsabovethatcathodicalchargingwithhydrogenleadstotheobviousdecreaseinthetensilestrengthandplasticityThisisbecausealargeamountofsolidsolutionhydrogenentersthespecimenintheprocessofhydrogenchargingSolidsolutionhydrogenisliabletoenterthecentreofdislocationundertheactionofdislocationtrap,henceraisingthemovabilityofdislocation.Thereforethedislocationsinhydrogenchargedspecimenmoveeasierthaninunchargedspecimen.soresultinginthereductionofyieldstrength[7].Whendislocationstartstomove,thecrystallatticeresistance(P-Nforce)whichitmustovercomeisgivenby:whereμismodulusofshear,visPoissonratio,aisspanofslipplane,bisatomspanofslipdirection.Moreover.theotherresistanceofdislocationmotionmayarisefromtheelasticinteractionofdislocation,theactionwithtreedislocationandetc.,itcanbeexpressedasfollows:whereαisconstant,XisdislocationspanSotheresistanceofdislocationmotioncanbewrittenasfollows:Becausehydrogenatomsreducetheatombondingstrengthafterhydrogencharging,shearmodulusμdecreasesandresultsinthereductionoff,therebytheyieldstressdecreases.Asthecentreofdislocationistheseriousdistortionzoneoflattice.thestresscanberelaxedafterhydrogenatomstuffing,andthesystemenergydecreases.Thusthecentreofdislocationisastrongtrapofhydrogen[8].Therefore,amovabledislocationcaptureshydrogenandmigratestograinboundaries.phaseboundariesorsurfaceofthespecimen,promotingthecrackiesformationandgrowth,thuscausingthelossofplasticity.Sincethelocalenrichmentofhydrogenisrealizedbydislocationtransporting(inthestageofdeformation),thelargerthereductionofyieldstress.theearlierarehydrogenatomstransportedtotheplaceofenrichment.Inaddition,thedamageofatombondingstrengthinducedbyhydrogenmakesthefracturestressdecrease[9]:whereCHishydrogenconcentration.σ_thisfracturestrengthbeforehydrogenchargingandisfracturestrengthafterhydrogencharging.Eq.(4)showsthatthematerialsmaybefracturedatalowerstraini.e.,brittlefractureoccurs.5.Conclusions(1)Hydrogencontentofdifferentlyagedspecimensincreaseswithincreasinghydrogenchargingtimethecapabilityofthealloytoabsorbhydrogeninunderagedstateisthestrongest.(2)Theyieldstressaswellasthepercentagereductionofareaof7175aluminumalloydecreaseashydrogenchargingtimeincreasesundervariousagedstates.(3)Underagedstateismostsensitivetohydrogeninducedsofteningandhardening.(4)Anexplanationwasofferedforthephenomenonofhydrogeninducedsofteninginthestageofdeformation,andhardeninginthestageoffracture.REFERENCES||1G.KKock,Corrosion35(1979)73.2M.K.TsengandH.LMarcus,Scr.Metall.15(1981)427.3PSFao.M.GaoandR.P.Wei,Scr.Metall.19(1985)265.4R.G.SongandM.K.TsengJ.NortheasternUniversity15(1994)5(inChinese).5R.K.Viswanadham,T.S.sunandJ.A.S.Green,Metall.Trans.11A(1980)85.6J.Liu,M.KTsengandB.R.Liu.NonferrousMiningandMetallrgy5(1989)33(inChinese).7LChen,WXChen,ZHLiuandZ.Q.Hu,InFrocofthe1stNationalConfonAl-LiAlloys(Sheryang.China,1991)p.328(inChinese).8Z.HLiuL.ChenW.XChenY.X.ShaoandZ.Q.Hu,InProc.ofthe1stNationalConfonAl-LiAlloys(Shenyang,China,1991)p.334(inChinese).9R.A.OrianiandF.H.Josephic,ActaMetall.22(1974)1065.##61G.KKock,Corrosion35(1979)73.2M.K.TsengandH.LMarcus,Scr.Metall.15(1981)427.3PSFao.M.GaoandR.P.Wei,Scr.Metall.19(1985)265.4R.G.SongandM.K.TsengJ.NortheasternUniversity15(1994)5(inChinese).5R.K.Viswanadham,T.S.sunandJ.A.S.Green,Metall.Trans.11A(1980)85.6J.Liu,M.KTsengandB.R.Liu.NonferrousMiningandMetallrgy5(1989)33(inChinese).7LChen,WXChen,ZHLiuandZ.Q.Hu,InFrocofthe1stNationalConfonAl-LiAlloys(Sheryang.China,1991)p.328(inChinese).8Z.HLiuL.ChenW.XChenY.X.ShaoandZ.Q.Hu,InProc.ofthe1stNationalConfonAl-LiAlloys(Shenyang,China,1991)p.334(inChinese).9R.A.OrianiandF.H.Josephic,ActaMetall.22(1974)1065.##A##BINVESTIGATION OF HYDROGEN INDUCED DUCTILE BRITTLE TRANSITION IN 7175 ALUMINUM ALLOY$$$$R.G.Seng: B.J Zhong, MG. Zeng and P. Geng(Department of Materials Scierce, Science College,Northearstern Univeisity, Shenyang 110006, China Maruscript received 4 September 1995 in revised form 20 April 1996)Abstrac:Effects of hydrogen on the mechanical properties of differently aged 7175 aluminum alloys were investigated by using cathodic H-permeation, slow strain rate tension and so on. The results indicate that both the yield stress and the percentage reduction of area decrease with increasing hydrogen charging time, and the degree of reduction decreases as aging time increases for the same hydrogen charging time.
关键词:
:hydrogen induced ductile-brittle transition
,
null
,
null
,
null