Haichao CUI
,
Fenggui LU
,
Xinhua TANG
,
Shun YAO
金属学报(英文版)
Particle redistribution occurred with the flow of pool fluid in laser welding aluminum composites. In order to investigate particle migration behavior, a numerical model was established on laser welding of ZL101-TiB2 composite. TiB2 migration coupling with fluid was realized. The volume-of-fluid (VOF) method was employed to track free fluid surfaces. The travel heat source was realized utilizing the workpiece motion in place of heat source motion, which made the heat load stable. Melting and evaporation enthalpy, recoil force, surface tension and buoyancy were considered in this model. Through the calculation it showed that the simulated weld cross section shape and particle distribution were in good agreement with experimental results.
关键词:
Laser welding
,
null
,
null
,
null
Applied Physics a-Materials Science & Processing
Amorphous aluminate YAlO3 (YAO) thin films on n-type silicon wafers as gate dielectric layers of metal - oxide semiconductor devices are prepared by pulsed laser deposition. As a comparison, amorphous aluminate LaAlO3 (LAO) thin films are also prepared. The structural and electrical characterization shows that the as-prepared YAO films remain amorphous until 900 degrees C and the dielectric constant is similar to 14. The measured leakage current of less than 10(-3) A/cm(2) at a bias of V-G = 1.0 V for similar to 40-nm-thick YAO and LAO films obeys the Fowler Nordheim tunneling mechanism. It is revealed that the electrical property can be significantly affected by the oxygen pressure during deposition and post rapid thermal annealing, which may change the fixed negative charge density at the gate interface.
关键词:
hafnium oxide;si;stability;silicon;transition;dioxide;devices;hfo2