Liuding WANG
,
Laizhu JIANG
,
Ming ZHU
,
Xiao LIU
,
Wangmin ZHOU
材料科学技术(英文)
The influence of double aging on the microstructure and mechanical properties of ultrahigh strength steel Aermet 100 was analyzed. Under the double aging, there is no apparent decrease in the strength of steel. However, the impact fatigue life can be prolonged by 35.5% and dynamic fracture toughness be raised by 22.6% respectively, as compared with the normal aging. Based on the observation of microscopic structure, the physical mechanism of the prolongation of impact fatigue life and the enhancement of stability of the reverted austenite, AR, is analyzed further. The results show that this new technique is a breakthrough of combination optimization between strength and toughness for Aermet 100 steel. In the light of the current understanding on this subject, the volume fracture of soften and tough AR formed in process of heat preservation at higher temperature of double aging increases drastically. Moreover, during the treatment of lower temperature of double aging, the carbon separating from the martensitic ferrite will diffuse into AR, resulting that the martensitic brittleness decreases and the stability of AR increases.
关键词:
Ultrahigh strength steel
,
null
,
null
,
null
Liuding WANG
,
Junqiang ZHOU
,
Quanxi CAO
,
Zhao CHEN
材料科学技术(英文)
The intensity and position of sidebands (satellites) on both sides of main diffraction peak in a great number of X-ray diffraction profiles of alloys always change with progress of aging. The sidebands position is determined by a newly optimized Voigt function in present investigation. Furthermore, for Cu-4 wt pct Ti alloy aged at 400℃ for 720 min and 1080 min, after introducing the weight factor of above two satellites intensity, the relative error between the fitting curves and X-ray diffraction profiles is less than 0.185%, which is more precise than the previously calculating result.
关键词:
X-ray diffraction
,
null
,
null
,
null
Liuding WANG
,
Changle CHEN
,
Yimin SHI
,
Mokuang KANG
,
Bangjie JI
材料科学技术(英文)
The α and β phases in Cu-Zn alloy system were regarded as regular solutions at elevated temperature, the results calculated from the experimental data have showed that the value of the interaction parameter of components Cu and Zn in the α phase ECuZnα varied obviously with decreasing component Zn. Substituting the function relation between ECuZnα and XZn obtained through curve-fitting into expression of free-energy variation of the system, the calculated martensitic transformation temperature Ms was in good agreement with experimental curve, so as to have more comprehensive information for fully making use of binary Cu-base functional materials.
关键词:
Liuding WANG
,
Changle CHEN
,
Mokuang KANG
材料科学技术(英文)
The depleted and enriched regions of solute atoms formed by spinodal decomposition in the early stage of tempering for ultrahigh strength steel 23Co14Ni12Cr3 were first confirmed by means of transmission electron microscopy (TEM). The segregation of solute atoms provides favorable composition and structure fluctuationfor the formation of secondary hardening phase M2C and cementite Fe3C.
关键词:
Journal of Materials Research
The morphology of the dark and bright regions observed by transmission electron microscopy for the Zr(64.13)Cu(15.75)Ni(10.12)Al(10) bulk metallic glass strongly depends on the ion beam parameters used for ion milling. This indicates that the ion beam could introduce surface fluctuation to metallic glasses during ion milling.
关键词:
room-temperature
材料科学技术(英文)
The effect of interstitial hydrogen on the cohesion of the Al Sigma=11(113) grain boundary (GB) is investigated based on the thermodynamic model of Rice-Wang using the first-principles density function calculation. The results indicate that interstitial H behaves as an embrittler from "strengthening energy" analysis. The reduced GB cohesion due to the presence of H at the GB is attributed to the low affinity between H and Al, and the weakened bonding of Al atomic pairs perpendicular to GB plane.
关键词:
hydrogen;grain boundary;Al-Mg alloys;pseudopotentials;1st-principles
Xiaoguang LIU
,
Xiaowei WANG
材料科学技术(英文)
The effect of interstitial hydrogen on the cohesion of the Al ∑=11(113) grain boundary (GB) is investigated based on the thermodynamic model of Rice-Wang using the first-principles density function calculation. The results indicate that interstitial H behaves as an embrittler from "strengthening energy" analysis. The reduced GB cohesion due to the presence of H at the GB is attributed to the low affinity between H and Al, and the weakened bonding of Al atomic pairs perpendicular to GB plane.
关键词:
Hydrogen
,
null
,
null
Physical Review B
By use of the linear-combination-of-atomic-orbital (LCAO) method for a cluster model, we studied the electronic structure of gamma-from Sigma 11 [1 (1) over bar0](11 (3) over bar) grain boundary doping with N and Mn atoms. The effect of the segregation on the cohesion of the grain boundary is investigated based on the Rice-Wang thermodynamic model. It is found that N could not only largely enhance the cohesion of the grain boundary but also eliminate the detrimental effect of Mn. The cosegregation effect of Mn and N on the cohesion of the grain boundary depends on where they segregate. Nitrogen could be reliably used in alloyed steels as an efficient strengthening element.
关键词:
electronic-structure;phosphorus segregation;stainless-steel;embrittlement;austenite;nitrogen;boron;impurities;fracture;metals
Journal of Physics and Chemistry of Solids
The layered ternary ceramics Ti3SiC2 and Ti3AlC2 are isostructural and can form Ti3Si1-xAlxC2 solid solutions combining the advanced properties of both compounds [H.B. Zhang, Y.C. Zhou, Y.W. Bao, M.S. Li, Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.90Al0.1C2 solid solution, Acta Mater. 52 (2004) 3631-3637; E.D. Wu, J.Y. Wang, H.B. Zhang, Y.C. Zhou, K. Sun, Y.J. Xue, Neutron diffraction studies of Ti3Si0.9Al0.1C2 compound, Mater. Lett. 59 (2005) 2715-2719; J.Y. Wang, Y.C. Zhou, First-principles study of equilibrium properties and electronic structure of Ti3Si0.75Al0.25C2 solid solution, J. Phys.: Condens. Matter 15 (2003) 5959-5968; Y.C. Zhou, J.X. Chen, J.Y. Wang, Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1-xSixC2 solid solutions, Acta. Mater. 54 (2006) 1317-1322]. In the present work, the solid solutions of Ti3Si1-xAlxC2 (x = 0, 0.25, 0.33, 0.5, 0.67, 0.75, 1) are investigated by first-principle calculations based on pseudo-potential plan-wave method within the density functional theory framework. The results show that as Al content increases in the solid solution, all the bonds have weakened to certain extents, which lead to an unstable structure both energetically and geometrically. The calculated results are compared and discussed with the reported data for the Ti3Si1-xAlxC2 solid solutions. (c) 2007 Elsevier Ltd. All rights reserved.
关键词:
ceramics;ab initio calculations;electronic structure;electrical;conductivity;oxidation behavior;mechanical-properties;ti3sic2;temperature;ti3alc2;air;si