欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(5139)
  • 图书()
  • 专利()
  • 新闻()

STRUCTURE OF Al-Mn-Zn-Mg ALLOY POWDER

WU Lijun , ZHAO Lihua , YANG Qiaoqin , LI Shaolu , LI Xieqian(Materials Research and Test Centre , Hunan University , Changsha 410082 , China)(Laboratory of Atomic Imaging of Solids , Institute of Metal Research , Chinese Academy of Sciences , Shenyang 110015 , China)

金属学报(英文版)

The structure of Al-Mn-Zn-Mg alloy powder annealed at 800℃ has been studied by transmisston electron microscopy(TEM).An approximant phase(named as C-phase) to the decagonal phase was found and its crystal structure was determined It belongs to c-center orthorhombic lattice with a=2.35 nm,b=3.27 nm and c=1.22 nm.We stillfound a hexagonal phase with a=0.7) nm and c=0.79 nm,(named as phase) in the annealed alloy powder.The annealed alloy powder is composed of the C-phase,the phase,the decagonal phase and Al solid solution.

关键词: :quasicrystal , null , null

Biomimetic Design and Test of Composite Materials

Benlian ZHOU International Centre for Materials Physics , Institute of Metal Research , Academia Sinica , Shenyang , 110015 , China

材料科学技术(英文)

A series of superior properties will make composites the most important structural materials in the next century.But they are difficult to design owing to the complexity of structure and processing. Biomaterials had been naturally selected and evolved for millions of years,a great variety of their ra- tional composite structures could be taken as our reference in the biomimetic design of composite materials.There are many difficult problems in the current study on composite materials such as: brittleness of continuous fibers and difficulties in interface design;easy pull-out of short fibers from matrix causing failure in reinforcing;being less easy in selecting the aspect ratio of whiskers and dif- ficulties in finding the way of toughening composites of ceramic matrices as well as the way of heal- ing inner damages.After describing the distinct composite features,the functional adaptability and self-healing ability of biomaterials,several examples o.f biomimetic design of composite materials have been listed in this paper:the optimum design of composites simulating bamboo structure;the fine structure of bamboo fibers;the dumb-bell model simulating animal bone;the model on the pull-out of fiber with fractal-tree structure and some tentative works on the healing of inner damage in composite materials The methodology of biomimetic design and its future have been given at the ast part of this paper.

关键词: composite material , null , null

THE CHANGING ROLE OF THE NATIONAL LABORATORIES IN MATERIALS RESEARCH

WADSWORTH Jeffrey and FLUSS Michael(Chemistry and Materials Science Directorate , Lawrence Livermore National Laboratory , Livermore , CA 94551)

金属学报(英文版)

The role of the National Laboratories is summarized from the era of post World War II to the present time. The U.S. federal government policy for the National Laboratories and its influence on their materials science infrastructure is reviewed with respect to .determining overall research strategies, various initiatives to interact with industry (especially in recent years),building facilities that serve the nation, and developing leading edge research in the materials sciences. Despite reductions in support for research in the U.S. in recent years, and uncertainties regarding the specific policies for Research &Development (R&D) in the U.S., there are strong roles for materials research at the National Laboratories. These roles will be centered on the abilities of the National Laboratories to field multidisciplinary teams, the use of unique cutting edge facilities, a focus on areas of strength within each of the labs,increased teaming and partnerships, and the selection of motivated research areas. It is hoped that such teaming opportunities will include new alliances with China, in a manner similar, perhaps, to those recently achieved between the U.S. and other countries.

关键词: : U.S. Materials Science. U.S. National Laboratories and Facilities , null

RESEARCH AND DEVELOPMENT OF HIGH TEMPERATURE STRUCTURAL MATERIALS FOR AERO-ENGINE APPLICATIONS

G.Q. Zhang

金属学报(英文版)

The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM including directionally solidified and single crystal superalloys for blade and vane applications, wrought superalloys for aero-engine disks and rings, and powder metallurgy (PM) superalloys for high performance disk applications were described. It was also reviewed the development of new class of high temperature structural materials, such as structural intermetallics, and advanced material processing technologies including rapid solidification, spray forming and so on. The trends of research and development of the above mentioned superalloys and processing technologies are outlined. Cast, wrought and PM superalloys are the workhorse materials for the hot section of current aero-engines. New high temperature materials and advanced processing technologies have been and will be the subject of study. It is speculated that high performance, high purity and low cost superalloys and technologies will play key roles in aero-engines.

关键词: superalloy , null , null

Research and development of carbon materials for electrochemical capacitors - II - The carbon electrode

新型炭材料

The state-of-the-art research and development of various carbons for possible application as the electrode material in electrochemical capacitors (ECs) are summarized. The main factors affecting the properties of ECs are carefully reviewed, from the material characteristics such as specific surface area, pore size distribution and pore volume, surface functional groups and graphitic orientation of the carbon materials, to the electrode characteristics and electrochemical aspects such as electrode preparation process, electrode density and thickness, electrode conductivity and pseudo-capacitance, etc. In particular, an overview is given of the most recent progress in electrochemical capacitors using carbon nanotubes as the electrode material and the prospect of their use in this application is highlighted.

关键词: electrochemical capacitors;carbon electrode;carbon nanotubes;double-layer capacitors;activated carbon;nanotube electrodes;supercapacitor electrodes;organic electrolyte;deposition;fiber

Research and development of carbon materials for electrochemical capacitors I. Electrochemical capacitors

新型炭材料

Electrochemical capacitors (ECs) store energy in eletric double-layers formed along the interface of electrode material and electrolyte, this produces an extremely large capacitance compared with the traditional capacitors. The fundamental principles of electrochemical capacitors are briefly introduced, and the key materials used like electrode materials, electrolytes, separator and current collector materials are summarized. Electrochemical capacitors with pseudocapacitance, such as metal oxides, polymers and hybrid capacitors, are also discussed. The characteristics, possible application fields, the development state, the future R&D prospects for electrochemical capacitors are highlighted.

关键词: electrochemical capacitors;supercapacitors;storage of electric energy;principles

RESEARCH ON MEASURING METHOD OF THE THERMAL CONDUCTIVITY FOR HIGHLY POROUS MATERIALS

J Y Wu , Z.M. Tang , W Shi andR.Z. Wang (Institute of Refrigeration and Cryogenics Engineering , Shanghai Jiao Tong University , Shanghai 200030 , China)

金属学报(英文版)

A transient method with rectangular pulse heating has been developed to measure the thermal conductivity of highly porous materials such as activated carbon, zeolite and silica gel. By this method the thermal conductivity can be measured quickly and accu-rately. In this paper, a set of automatically controlled testing equiptnent is presented.The measuring method is analysed. The thermal conductivities of some samples, such as activated carbon and zeolite, are measured by the equipment. A group of useful data has been obtained.

关键词: thermal conductivity , null , null

In field electrochemical evaluation of carbon steel corrosion in a marine test environment

Anti-Corrosion Methods and Materials

Purpose - The purpose of this paper is to research electrochemical testing technology as applied to in field corrosion evaluation of metallic materials and to study the corrosion behaviors of the materials exposed in different marine regions. Design/methodology/approach - The electrode systems for in field electrochemical evaluation of metallic samples are designed and applied to monitor two types of carbon steel samples exposed both in the submerged zone and the tidal zone at a marine corrosion test station. Corrosion potential monitoring, potentiostatic square wave, electrochemical impedance spectroscopy, and electrochemical noise methods are used in the test. Findings - It is confirmed that the electrode systems could be used for electrochemical measurement of metallic samples during exposure in the submerged zone and the tidal zone of a marine corrosion test station for long-term test durations. The electrochemical measuring results reflect the changes and differences of the samples' corrosion behavior during exposure in different regions and they respond directly to the influence of marine environmental factors on the corrosion behaviors, especially the influence of temperature. Originality/value - In this paper, lots of consecutive and dynamic corrosion information is obtained from field exposures. The findings provide a foundation upon which to investigate and forecast the corrosion behaviors of materials in marine environments.

关键词: Corrosion;Electrochemistry;Steel;Electrical impedance;Spectroscopy

Laser-Heated Diamond-Anvil Cell (LHDAC) in Materials Science Research

N.V.Ch , ra Shekar , P.Ch.Sahu , K.Govinda Rajan

材料科学技术(英文)

Laser-heated diamond-anvil cell (LHDAC) is emerging as the most suitable, economical and versatile tool for the measurement of a large spectrum of physical properties of materials under extreme pressure and temperature conditions. In this review, the recent developments in the instrumentation, pressure and temperature measurement techniques, results of experimental investigations from the literature were discussed. Also, the future scope of the technique in various avenues of science was explored.

关键词: Laser heating , null , null , null

Improved hydrogen storage performance of Li-Mg-N-H materials by optimizing composition and adding single-walled carbon nanotubes

International Journal of Hydrogen Energy

A systematic investigation on the hydrogen storage properties of Li-Mg-N-H materials with various compositions was performed. Li-Mg-N-H hydrogen storage materials were prepared by mechanically milling LiNH2/MgH2 mixtures with initial molar ratios ranging from 1.5:1 to 3: 1, followed by de/rehydriding at 200 degrees C. It was found that the hydrogen storage capacity of the system was highly dependent on the initial phase ratio of the LiNH2/MgH2 mixture. An optimum hydrogen capacity of about 5 wt% was achieved in the 2.15:1 LiNH2/MgH2 mixture. Different carbon materials, such as the single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes, graphite and activated carbon, were used as additive to improve the hydrogen storage performance. It was found that the dehydriding kinetics of the Li-Mg-N-H material could be markedly improved by adding a small amount of SWNTs, especially in the as-prepared state. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

关键词: hydrogen storage;dehydriding kinetics;carbon nanotubes;arc-discharge method;system;microstructure;desorption;absorption;behaviors;property;imides

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共514页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词