P. R. Ding
,
D. Y. Ju
,
T. Lnouc and E. de Vries( 1) MSC Japan Ltd.
,
Osaka
,
Japan 2) Saitama Institute of Technology
,
Saitama
,
Japan 3) Kyoto Universily
,
Kyoto
,
Japan 4) MacNeal - Schwendler (E. D. C. ) B. V.
,
Gouda
,
The Netherlands)
金属学报(英文版)
A method to simulate processes of forging and subsequent heat treatment of an axial symmetric rod is formulated in eulerian description and the feasibility is investigated. This method uses finite volume mushes for troching material deformation and an automatically refined facet surface to accurately trace the free surface of the deforming material.In the method,the deforming work piece flows through fixed finite volume meshes using eulerian formulation to describe the conservation laws,Fixed finite volume meshing is particularly suitable for large three-dimensional deformation such as forging because remeshing techniques are not required, which are commonly considered to be the main bottelencek in the ssimulations of large defromation by using the finite element method,By means of this finite volume method, an approach has been developed in the framework of "metallo-thermo-mechanics" to simulate metallic structure, temperature and stress/strain coupled in the heat treatment process.In a first step of simulation, the heat treatment solver is limited in small deformation hypothesis,and un- coupled with forging. The material is considered as elastic-plastic and takes into account of strain, strain rate and temperature effects on the yield stress.Heat generation due to deformation,heat con- duction and thermal stress are considered.Temperature - dependent phase transformation,stress-in- duced phase transformation,latent heat,transformation stress and strain are included.These ap- proaches are implemented into the commerical commercial computer program MSC/SuperForge and a verification example with experimental date is given as comparison.
关键词:
finite volume method
,
null
,
null
,
null
,
null
K. Mii (Sumitomo Metal Industries
,
Ltd.
,
1-t-3 Otemachi
,
Tokyo 100
,
Japan)M Amano (National Research Institute for Metals
,
1-2-1 Sengen
,
Tsukuba 305
,
Japan)
金属学报(英文版)
The R & D of hydrogen absorbing alloys in Japan started in the early 1970s.Many alloys such as TiMm1.5 based alloys, Fe-Ti-O alloys (e.g. FeTi1.15 O0.024) andthe(mischmetal)Ni5 based alloys (e.g. MmNi4.5 Cr0.46 Mn0.04) were developed by the early 1980s. The application of these alloys to hydrogen storage, heat storage, heat pump, hydrogen purification and motor vehicles has been tried in many iaboratories,and the various techniques for using hydrogen absorbing alloys have been developed.The standarkization of evaluation methods for hydrogen absorbing alloys has been promoted by the Ministry of International Trade and Industry (MITI), and four of them were established as Japanese Industrial Standard (JIS).Alloys for Ni-Metal Hydride batteries have been extensively investigated since 1987in Japun. Mm-Ni-Co-Al-Mn alloys (e.g. MmNi3.55 Co0.75Al0.9Mn0.4) have been devel-oped and commereialized since 1990. The amount of production of small-size Ni-MH batteries in 1995 was about three hundred milliion in number and about one hundred billion yen. The R & D for higher enerpy-density Ni-MH batteries is intensively in progress.MITI and STA (Science and Technology Agency) have promoted the R & D of hydro-gen absorbing alloys in Japan by carrying out the national projects such as Sunshine Program (MITI: 1974-1993) and Utilization of Wind Engeray (STA 1980-1985). The New Sunshine Program (MITI 1993-2020) have started in 1993. This program con-tains the application of hydrogen absorbing alloys to Economical- Enerpy- City System and to We-NET (International Clean Energy System of Technology Utilizing Hydro-gen: World Energy Network.
关键词:
hydrogen absorbing alloy
,
null
,
null
,
null
Jingchang ZHANG
,
Qing LI
,
Weiliang CAO
材料科学技术(英文)
A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%~30.1%) were prepared from TiCl4 and SnCl4•5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination technology. Characterizations with X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR) showed that, in addition to anatase type TiO2, a new active phase (Ti, Sn)O2 (with particle size of 2.0~4.3 nm) formed, and there were no SnO2 crystals observed in the range of the doping concentration studied. Photo-catalytic reaction of phenol was used as a model reaction to evaluate the catalytic activities of the obtained catalysts. Compared with pure TiO2 or Ti-Sn catalyst prepared with general sol-gel method, Ti-Sn nano-composite photo-catalyst thus obtained showed significant improvement in catalytic activity. The photo-catalytic degradation rate of phenol could reach as high as 93.5% after 7 h. The preparation conditions of the new phase (Ti, Sn)O2 were investigated and its catalytic mechanism was proposed. The photo-catalytic particles prepared using SCFD combination technology exhibited small particle size, large surface area and high activity.
关键词:
Anatase TiO2
,
null
,
null
,
null
,
null
,
null
Daihua HE
,
Zhengyi FU
,
Qingjie ZHANG
材料科学技术(英文)
Combustion reaction welding, one promising method to weld ceramics and metals, was used to weld TiB¬2 and Mo. The results showed that the reacted products through combustion reaction were TiB¬2 and MoB when the Mo contents in reactants were 20 wt pct and 40 wt pct while there was Mo besides MoB and TiB¬2 when there were 60 wt pct and 80 wt pct Mo in reactants. Diffusion of elements occurred at the interfaces of the two substrates. The interfaces between the reacted and the two substrates were indistinct after being welded. The welding temperature strongly affected properties of the samples. The value of bending strength of the sample with 80 wt pct Mo in reactant welded at 1500℃ was the highest, 368.52 MPa. The highest value of shear strength among all the samples was that of the one with 40 wt pct Mo in reactant welded at 1500℃, 50.97 MPa.
关键词:
Combustion reaction welding
,
null
,
null
,
null
Min ZHAO
材料科学技术(英文)
TiB2P/Al composite was successfully fabricated by squeeze casting technology. Its mechanical and tribological properties were evaluated. The elimination of Ti-Al intermetallic compound was confirmed by X-ray diffraction (XRD) studies. At 45% volume fraction, the bending strength at ambient temperature was 934 MPa. And the fracture modes included ductile failure of Al matrix and brittle fracture of TiB2 particles. In dry sliding wear mode, severe plastic deformation and adhesive wear were found on the worn surfaces of the SiCP/Al composite. But no obvious characteristics of adhesion or abrasion wear were observed on that of the TiB2P/Al composites. At the steady stage, the friction coefficient of the SiC2P/Al composite was about 0.6. While that of TiB 2P/Al composite was only about 0.16~0.17.
关键词:
TiB2
,
null
,
null
,
null
B.W. Wang
,
H. Shen
金属学报(英文版)
Ni-Cr System solar selective thin solid films were prepared by d.c. magnetron reactivesputtering under the atmosphere of O2 and N2. Ni-Cr alloy was chosen as targetmaterial and copper sheets as substrate. Using SEM, Spectrophotometer and Talystepto analyze the relations between the selective characteristic and the structure, theformation and the thickness of the thin films. The aim is to obtain good solar selectivethin films with high absorptance and low emittance, which is applied to flat plate solarheat collectors.
关键词:
solar selective thin film
,
null
,
null
,
null
D.Eylon
,
S.R.Seagle
材料科学技术(英文)
The state of Ti research, development and industry is reviewed in this article. The fifty-year anniversary of Ti technology commercialization in the USA provides an opportunity for a historical perspective. Incorporation of "information-age" tools into alloy development, processing, and production invigorates the technology. Consolidation, diversification and globalization have been transforming the Ti industry in the recent years.
关键词:
Xin Yang
材料科学技术(英文)
Oxidation protective MoSi2-Mo5Si3/SiC multi-coatings for carbon/carbon composites were prepared by chemical vapor reaction and slurry-sintering method. The influence of preparation technology on the structure and phase composition of the coating was investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analyses, and then their relationship was discussed. The results indicate that the Si/Mo ratio of the slurry and sintering processing were two main factors that significantly affected the structure and phase composition of the multi-coating. Appropriate sintering process and relatively high Si/Mo ratio were essential for preparing the multi-coating with dense structure and favorable phase composition. After being sintered at 1723 K for 2 h and with the Si/Mo ratio of the slurry being 4.5 (weight ratio), a dense structure accompanied by favorable phase composition of the coating can be obtained. When heat treated at 2373 K for 1 h, this coating became more compact and continuous. Oxidation tests (performed at 1623 and 1823 K) demonstrated that both of these two obtained multi-coatings exhibited better anti-oxidation property than single layer SiC coating.
关键词:
Carbon/carbon composites
,
null
,
null
Journal of Solid State Electrochemistry
The microencapsulation technology was brought in to solidify corrosion inhibitor in order to prolong the releasing time of it. In this work, thiourea (H(2)NCSNH(2)) was used as a corrosion inhibitor and microcapsuled using glutin and polyvinyl alcohol (PVA), respectively, as protective agent. The re-sealing process was used as a way to prolong the releasing time of the H(2)NCSNH(2) encapsulated in microcapsules. It was found that the H(2)NCSNH(2) microcapsule corrosion inhibitor using PVA as a protective agent had a better releasing time. The releasing times of the H(2)NCSNH(2) microcapsule corrosion inhibitors were prolonged from 18 to 48 h by re-sealing process and using PVA as a protective agent. Both the use of PVA as a protective agent and the application of the re-sealing process decreased the encapsulation efficiency of the H(2)NCSNH(2). The performance parameters on protecting Q235 carbon steel from corrosion in 0.1-M H(2)SO(4) solution were evaluated by polarization curve and electrochemical impedance spectra methods. The results showed that the H(2)NCSNH(2) released into the solution from microcapsules could well protect Q235 carbon steel from corrosion and the corrosion-inhibiting mechanisms of it were the same as that of H(2)NCSNH(2).
关键词:
Microencapsulation technology;Corrosion;UV spectrophotometric method;Electrochemical impedance spectra;Polarization curve;carbon-steel;3-percent nacl;mild-steel;in-vitro;release;encapsulation;acid;microparticles;microcapsules;derivatives