U. Brill
金属学报(英文版)
The use of high-temperature materials is especially important in power station construction, heating systems engineering, furnace industry, chemical and petrochemical industry, waste incineration plants, coal gasification plants and for flying gas turbines in civil and military aircrafts and helicopters. Particularly in recent years, the development of new processes and the drive to improve the economics of existing processes have increased the requirements significantly so that it is necessary to change from well-proven materials to new alloys. Hitherto, heat resistant ferritic steels sufficed in conventional power station constructions for temperatures up to 550℃ newly developed ferritic/martensitic steels provide sufficient strength up to about 600-620℃. In new processes, e.g. fluidized-bed combustion of coal, process temperatures up to 900℃ occur. However, this is not the upper limit, since in combustion engines, e.g. gas turbines. Material temperatures up to 1100℃ are reached locally. Similar development trends can also be identified in the petrochemical industry and in the heat treatment and furnace engineering. The advance to ever higher material temperatures now not only has the consequence of having to use materials with enhanced high-strength properties, considerable attention now also has to be given to their chemical stability in corrosive media. Therefore not only examples of the use of high-temperature alloys for practical applications will be given but also be contributed to some general rules for material selection with regard to their high-temperature strength and corrosion resistance.
关键词:
nickel-based alloy
,
null
,
null
Journal of Materials Research
The morphology of the dark and bright regions observed by transmission electron microscopy for the Zr(64.13)Cu(15.75)Ni(10.12)Al(10) bulk metallic glass strongly depends on the ion beam parameters used for ion milling. This indicates that the ion beam could introduce surface fluctuation to metallic glasses during ion milling.
关键词:
room-temperature
Chinese Science Bulletin
A study was carried out in order to investigate the effect of contaminants and meteorological variables on the rust layer of carbon steel exposed in Shenyang urban atmosphere. Seven kinds of contaminants and twelve kinds of meteorological parameters were also registered in order to correlate the data with respect to corrosion rate and the stepwise multiple regression analysis was carried out in order to obtain the best regression model. The sum of rainfall time as well as sunshine time and the concentration of H(2)S could stimulate initial atmospheric corrosion of carbon steel. The initial atmospheric corrosion kinetics of carbon steel was observed to follow the cubic equation. The corrosion products were analyzed by XRD and the transformation of phases in different periods was discussed.
关键词:
contaminants;meteorological parameters;carbon steel;urban atmospheric;corrosion;stepwise multiple regression;corrosion products;rust;pollution
Ying Liy Changzhen Wang Zhongli Zhang Jiangxin Wang
材料科学技术(英文)
The steel contains a small amount of hydrogen which will escape during the heat treatment. The hydrogen pressure in 16MnRE steel was investigated with a hydrogen sensor, which used SrCe0:95Yb0:05O3-α proton conductor as a solid electrolyte, YHx+YH2-z as a solid state reference electrode and Ni wire as electrode constructing a hydrogen concentration cell, shown as Ni|YHx+YH2-z |SrCe0:95Yb0:05O3-α |[H]steel |Ni. The response time of sensor is less than 10 s. The relational expression of hydrogen partial pressure with temperatures was determined using two shape proton conductors. The results showed the regularity in experimental temperature range, and the hydrogen partial pressure increased as its temperature was raised.
关键词:
Hydrogen sensor
,
Proton conductor
,
Solid electrolyte
Y.G. Cao
,
X.Y. Sun
金属学报(英文版)
J-integral and crack opening displacement δ(COD) were important parameters for characterization of fractures in engineering materials. The relationship between J-integral and COD has been investigated for a long time and was enerally represented as J = m σyδ, where σy is the yield strength and m is a function of specimen geometry and material properties. To determine the value of m, extensive studies and experiments have been performed. The method that used the fracture-surface topography analysis (FRASTA) for determining J-integral from fracture surfaces of materials was introduced. On the basis of the relationship between COD and fracture surface average profile, the relationship between J-integral and COD was deduced and compared with the generally used equation. The method was experimentally confirmed to be able to provide a new way to determine the relationship between J-integral and COD.
关键词:
FRASTA
,
null
,
null
张立春
,
何安强
,
叶恒强
,
张永昌
材料研究学报
用HRTEM、TEM及EDAX分析研究了Al─Li—Cu—Mg—Zr合金中的一种新相(暂名H相)和六角Z相的结构,确定H相具有四方点阵,点阵参数为α=2.8nm,c=2.4nm,EDAX分析表明H相和Z相均含Al、Mg、Cu发现H相与Z相的共存取向关系为[100]‖[1120]Z,[1010]H‖[0001]Z。还观察到Z相中一种特有的旋转畴结构
关键词:
Al─Li─Cu─Mg─Zr合金.四方H相
,
tetragonal H phase
,
hexagonal Z phase
李虎
,
王作成
,
薛长深
,
庄栋栋
,
王晓
,
张思勋
材料热处理学报
为了研究钢中合金元素Nb、B、Ni对低合金高强度H型钢抗层状撕裂能力(Z向性能)的影响,设计了对照试验,通过常温下拉力试验,对其力学性能尤其是断面收缩率进行了测试,使用XRD、SEM、TEM以及EDS对其组织和成分进行了分析.结果表明:微合金元素Nb、B和微量元素Ni对钢材的Z向性能产生了明显的不良影响,含有Nb、B和Ni,经过钢包精炼的Q345E钢的Z向性能显著低于不含Nb、B和Ni,未经钢包精炼且含有较多夹杂物的Q345B钢.其原因主要在于Nb、B、Ni的存在阻碍了钢材变形过程中位错在晶界和晶内的移动.
关键词:
低合金高强度钢
,
Z向性能
,
合金元素
,
夹杂物
,
阻碍位错
孙建春
,
盛光敏
,
陈登明
,
周安若
,
朱光俊
功能材料
1J50软磁合金的性能主要是通过H_2热处理获得的,在1130℃和H2气氛保护下对冷轧态1J50软磁合金进行了热处理.运用MATS-2010SA软磁测试仪对处理前后1J50软磁合金的磁性能进行了检测,运用金相显微镜、XRD等手段对处理前后1J50软磁合金的组织结构进行了分析.结果表明,通过H_2热处理,1J50软磁合金的矫顽力显著降低,起始磁导率和最大磁导率提高;组织结构发生明显变化,冷轧态1J50软磁合金组织为孪晶奥氏体,平均晶粒尺寸为200μm,处理过后,晶粒显著长大,平均晶粒尺寸为100μm;由于在600℃时采取了快冷,处理后1J50软磁合金中未出现大量FeNi相和FeNi_3相.
关键词:
H2热处理
,
1J50
,
组织结构
,
性能