MA Zongyi YAO Zhongkai Harbin Institute of Technology
,
Harbin
,
China
金属学报(英文版)
The SiC_w/Al composite prepared by squeeze casting has a combination of superior room temperature specific strength and modulus together with excellent thermal properties.The extrusion can make an improvement on the strength and ductility of the composite from 582 MPa as squeeze casted up to 639 MPa,and on the transformation from isotropic to the anisotropic structure.This seems to be explained by the orientation of whiskers and the densification of dislocations in matrix.TEM observation indicates that the stacking fault is the usual planar defect on the SiC_w surface. composite;;SiC whisker;;Al alloy;;microstructure
关键词:
composite
,
null
,
null
,
null
WANG Longbao State Key Laboratory of Rapidly Solidified Non-Equilibrium Alloys
,
Institute of Metal Research Academia Sinica
,
Shenyang
,
ChinaDAVIES H A School of Materials
,
University of Sheffield
,
U.K
金属学报(英文版)
Studies were made of the effect of mechanical pulverization on relaxation,crystallization and brittle-ductile transition of the anneal-embrittled Fe_(75)Si_(10)B_(15) metallic glass rib- bon.Results show that the Curie temperature,T_C,decreases and the total enthalpy of relaxation increases gradually with variation of pulverized time.DSC traces reveal an extra exothermic peak,T_X_1,and a distinct glass transition endothermic peak,T_g_1,with increasing pulverized time,T_C,T_X_1,and T_g_1 decrease simultaneously,and the exother- mic peak area corresponding to T_X_1 increases gradually.The surface slip-steps of flaky particles and their corresponding shear are produced by pulverizing the pre-embrittled amorphous glass.The lost ductility of the glass may restore during annealing.
关键词:
mechanical pulverization
,
null
,
null
,
null
LU Ke State Key Laboratory for RSA
,
Institute of Metal Research Academia Sinica
,
Shenyang
,
China
金属学报(英文版)
A new microstructure model is developed for amorphous alloys,so called Cluster medel, in which the amorphous phase is thought of composing of randomly distributed ordered clusters of different sizes.Thermodynamic calculation on this model deduces a parameter describing the glass forming ability of metallic alloys:α_c=(1-2.08/Φ_m)T_g/T_m,where T_g is gass transition temperature,T_m is the melting temperature,and Φ_m is entralpy change of melting.It is believed that easy glass forming alloy systems have larger values of a_c.This new criterion of GFA not only provides the theoretical background for several GFA criteria in the literature cited,but also can predict the GFA of many alloy systems more reasonably and accurately.
关键词:
amorphous metal
,
null
,
null
,
null
LIU Zhonghao CHEN Lian Institute of Metal Research
,
Academia Sinica
,
Shenyang
,
China
金属学报(英文版)
Within the range of 77 to 295 K,the strength and plastieity of 18Ni maraging steel increase with decreasing temperature and decrease with increasing hydrogen content.The susceptibility to hydrogen embrittlement of the maraged specimens is superior to solid solution ones.The dislocations after plastically deforming will tangle into dislocation cells which reduce thermselves in size as the temperature decreases,and coarsen as the hydrogen content in- creases.No cryogenie deformation twin was found.The tensile fracture surfaces of the solu- tion and maraged specimens containing 5.90 ppm hydrogen under 295 to 223 K are revealed as quasi-cleavage and intergranular features respectively and as transgranular ones under other experimental conditions.The influence of hydrogen on the mechanical behaviour of steel and the mechanism of hydrogen induced deformation and fracture are discussed. Research Assistant, Institute of Metal Research,Academia Sinica, Shenyang 110015,China
关键词:
maraging steel
,
null
,
null
,
null
Corrosion
This paper introduces the design of a localized corrosion rate monitoring instrument that can monitor and evaluate the maximum and stable localized corrosion rate of a nonpassivable metal in a corrosive environment by measuring the current density in a corrosion sensor with an occluded anode.
关键词:
instrument;localized corrosion rate;monitor
Juhua HUANG
,
Jinjun RAO
,
Xuefeng LI
材料科学技术(英文)
Sheet metal forming is widely applied to automobile, aviation, space flight, ship, instrument, and appliance industries. In this paper, based on analyzing the shortcoming of general finite element analysis (FEA), the conception of parametric finite element analysis (PFEA) is presented. The parametric finite element analysis, artificial neural networks (ANN) and genetic algorithm (GA) are combined to research thoroughly on the problems of process parameters optimization of sheet metal forming. The author programs the optimization scheme and applies it in a research of optimization problem of inside square hole flanging technological parameters. The optimization result coincides well with the result of experiment. The research shows that the optimization scheme offers a good new way in die design and sheet metal forming field.
关键词:
Sheet metal forming
,
null
,
null
,
null