Acta Physica Sinica
A first-principles plane-wave pseudopotential method based on the density functional theory is used to investigate the dehydrogenation properties and the influence mechanism of Li(4)BN(3)H(10) hydrogen storage materials. The binding energy, the density of states and the Mulliken overlap population are calculated. The results show that the binding energy of crystal has no direct correlation with the dehydrogenation ability of (LiM)(4)BN(3)H(10)(M = Ni, Ti, Al, Mg). The width of band gap and the energy level of impurity are key factors to affect the dehydrogenation properties of (LiM)(4)BN(3)H(10) hydrogen storage materials: the wider the energy gap is, the more strongly the electron is bound to the bond, the more difficulty the bond breaks, and the higher wile the dehydrogenation temperature be. Alloying introduces the impurity energy level in band gap, which leads the Fermi level to enter into the conduction band and the bond to be weakened, thereby resulting in the improvement of the dehydrogenation properties of Li(4)BN(3)H(10). It is found from the charge population analysis that the bond strengths of N-H and B-H are weakened by alloying, which improves the dehydrogenation properties of Li(4)BN(3)H(10).
关键词:
hydrogen storage materials;first-principles calculation;element;substitution;dehydrogenation;linh2
International Journal of Hydrogen Energy
A systematic investigation on the hydrogen storage properties of Li-Mg-N-H materials with various compositions was performed. Li-Mg-N-H hydrogen storage materials were prepared by mechanically milling LiNH2/MgH2 mixtures with initial molar ratios ranging from 1.5:1 to 3: 1, followed by de/rehydriding at 200 degrees C. It was found that the hydrogen storage capacity of the system was highly dependent on the initial phase ratio of the LiNH2/MgH2 mixture. An optimum hydrogen capacity of about 5 wt% was achieved in the 2.15:1 LiNH2/MgH2 mixture. Different carbon materials, such as the single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes, graphite and activated carbon, were used as additive to improve the hydrogen storage performance. It was found that the dehydriding kinetics of the Li-Mg-N-H material could be markedly improved by adding a small amount of SWNTs, especially in the as-prepared state. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
关键词:
hydrogen storage;dehydriding kinetics;carbon nanotubes;arc-discharge method;system;microstructure;desorption;absorption;behaviors;property;imides
Journal of Applied Physics
The dependence of yield strength, uniform elongation, and toughness on grain size in metallic structural materials was discussed. The toughness is defined as the product of yield strength and uniform elongation. The yield strength versus grain size can be well described by the Hall-Petch relation; however, the uniform elongation versus grain size is not well understood yet. A simple model involving the densities of geometrically necessary dislocations and statistically stored dislocations was proposed to estimate the uniform elongation versus grain size. Existing data for low carbon steels and aluminum indicate that, in the grain size less than 1 mu m, the materials usually exhibit high strength and low uniform elongation and, in the grain size greater than 10 mu m, the materials usually exhibit low strength and high elongation; in either case the toughness is low. However, in the grain size of several micrometers, the toughness is the highest. It is suggested that we should pay more attention to develop the metallic materials with grain size of several micrometers for structural applications. (c) 2007 American Institute of Physics.
关键词:
nanocrystalline copper;nanostructured metal;steels;deformation;ductility;law
Xinbin HU
,
Mei ZHANG
,
Xiaochun WU
,
Lin LI
材料科学技术(英文)
Based on the local equilibrium assumption, coarsening behavior of M23C6 carbide at 700℃ in H13 steel was simulated by DICTRA software. The results from the calculations were compared with transmission electron microscopy (TEM) observations. The results show the interfacial energy for M23C6 in H13 steel at 700℃ is thus probably 0.7 J•m-2, which fits the experiments well. The influence of composition and temperature on the coarsening rate was also investigated by simulations. Simulations show a decrease in the coarsening rate when V/Mo ratio is increased, while the coarsening rate increases with increasing temperature.
关键词:
DICTRA Simulation
,
碳化物粗化
,
界面能
,
H13钢
Yong LIU
,
Baiyun HUANG
,
Kechao ZHOU
,
Hongwu OUYANG
,
Yuehui HE
材料科学技术(英文)
In order to overcome the shortcomings of conventional hot pressing, a novel near net-shape technique, called radial hot pressing, for P/M parts with large height-to-diameter (H/D) ratio was introduced. Effects of processing parameters on the microstructures and density of P/M TiAl base alloy valves were studied. Results show that the radial hot pressing is an effective technique for manufacturing valves with a H/D ratio of about 10:1, and the perfect joint interface between the Mo sheet and the parts is helpful for subsequent HIPing.
关键词:
Near net-shape technique
,
null
,
null