{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"综述了新型高温结构材料TiAl合金的高周疲劳行为基本特征,包括疲劳极限、疲劳强度和应力-寿命行为.分析TiAl合金高周疲劳S-N曲线特点发现,TiAl合金不具有疲劳极限,合金成分和组织形态是影响TiAl合金疲劳强度的关键因素.总结不同温度下的TiAl合金高周疲劳性能发现,当温度由韧-脆转变温度以下提高至该温度以上时,合金的高周疲劳寿命对循环应力变化的敏感性得到了明显改善.此外,还着重讨论了TiAl合金层片组织的疲劳寿命波动性问题,认为层片组织的随机取向是影响疲劳裂纹形核和小裂纹扩展过程的关键因素,从而导致合金高周疲劳寿命产生明显波动.根据该波动机理,探讨了增加TiAl合金高周疲劳寿命、降低其波动性的组织优化途径.","authors":[{"authorName":"万文娟","id":"382022c3-25d6-44c3-9abf-6f712c967f8a","originalAuthorName":"万文娟"},{"authorName":"韩伟","id":"c16f967e-c1c7-41dd-8015-d22c4c697a40","originalAuthorName":"韩伟"},{"authorName":"张继","id":"785efb51-ccb0-4713-9a83-16513194e9a0","originalAuthorName":"张继"}],"doi":"10.11896/j.issn.1005-023X.2014.23.002","fpage":"8","id":"b5826e50-5339-4de1-9da8-abea22d82add","issue":"23","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"726ad5ff-ea9d-47ef-a781-0effbcba3896","keyword":"TiAl","originalKeyword":"TiAl"},{"id":"f8dd05cd-c6a8-456b-8348-5ef5e6556078","keyword":"高周疲劳","originalKeyword":"高周疲劳"},{"id":"6c8d6b2f-f9fa-4a2c-9856-2fcec70f3b54","keyword":"S-N曲线","originalKeyword":"S-N曲线"},{"id":"a56cb8ea-2f30-4a51-b01d-611ad911f1f8","keyword":"疲劳寿命波动","originalKeyword":"疲劳寿命波动"}],"language":"zh","publisherId":"cldb201423002","title":"TiAl合金高周疲劳行为的基本特征","volume":"28","year":"2014"},{"abstractinfo":"对铸造Ti-47.5Al-2.5V-1.0Cr-0.2Zr(原子分数/%)合金层片组织进行了疲劳测试,获得了单一应力下的疲劳寿命数据,通过断口观察和数据统计处理,分析了疲劳寿命的分布特点及其控制因素.结果表明:实验合金的疲劳寿命具有显著波动,波动范围为103~ 106周;并集中分布在长、短两个寿命区间内.这一现象和导致疲劳试样失效的疲劳裂纹源的类型有关;其中,短寿命试样的疲劳裂纹起源于疏松孔洞,长寿命试样的疲劳裂纹源为弥合界面和软取向层片界面.建立了三种裂纹源对疲劳寿命的影响的两参数威布尔分布模型,可进行对应于某一失效概率的疲劳寿命预测.三种疲劳裂纹源中,疏松孔洞对疲劳寿命不利影响的程度最为严重.","authors":[{"authorName":"万文娟","id":"76ba6dde-d88c-4d6b-a414-f66bf492bce9","originalAuthorName":"万文娟"},{"authorName":"韩波","id":"18e849c2-251b-48b5-ad84-4b3d10fdeaa5","originalAuthorName":"韩波"},{"authorName":"韩伟","id":"130d0810-ad66-4347-a9be-9ca02f565561","originalAuthorName":"韩伟"},{"authorName":"张继","id":"1d77ebd0-847f-4143-8c6b-28533d94d338","originalAuthorName":"张继"}],"doi":"10.11868/j.issn.1005-5053.2016.4.010","fpage":"71","id":"e6d7cee3-ee75-42ec-bbe6-54deb937002e","issue":"4","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"8c60c1b6-82c3-4fa9-b728-14f73664b7f2","keyword":"TiAl合金","originalKeyword":"TiAl合金"},{"id":"8b38edf7-6365-4a58-ad12-41c4f56ab5b3","keyword":"疲劳寿命","originalKeyword":"疲劳寿命"},{"id":"4d49e766-36d1-4d54-804f-eac9f8f81302","keyword":"铸造缺陷","originalKeyword":"铸造缺陷"},{"id":"3856f2b4-ddc5-4705-8526-d46c02686a95","keyword":"威布尔分布","originalKeyword":"威布尔分布"}],"language":"zh","publisherId":"hkclxb201604010","title":"铸造TiAl合金疲劳寿命统计分布","volume":"36","year":"2016"},{"abstractinfo":"分析了金属材料超高周疲劳断口形貌特征,介绍了基于Paris公式的裂纹扩展寿命预测模型和基于位错理论的疲劳裂纹萌生寿命预测模型,并结合前期有关金属材料超高周疲劳行为的试验数据,对2种预测模型的误差进行分析.结果表明,基于位错理论的寿命预测模型较为准确;而基于Paris公式的裂纹扩展寿命预测模型,其预测精度随着疲劳寿命的增加而降低,即材料组织缺陷萌生成为疲劳裂纹阶段占据疲劳寿命的绝大部分.在此基础上,提出了超高周疲劳寿命预测的研究方向:疲劳裂纹的萌生机制,特别是裂纹源表面萌生和内部萌生的竞争性机制;建立大样本数据,结合统计学方法,以工程构件的服役安全性和可靠性为基础,精确评价超高周疲劳寿命.","authors":[{"authorName":"宋亚南","id":"a3f57d8d-e363-4060-b147-c679dc69b63c","originalAuthorName":"宋亚南"},{"authorName":"徐滨士","id":"420e93bc-bf6e-4637-8f47-a160b0081bae","originalAuthorName":"徐滨士"},{"authorName":"王海斗","id":"1ae8eda4-1c15-49a9-a0ed-b1d1cf5cb8f5","originalAuthorName":"王海斗"},{"authorName":"张玉波","id":"0da25032-c90c-4137-940f-b98b99e26de9","originalAuthorName":"张玉波"},{"authorName":"邢志国","id":"ba8df743-30b2-407a-86a5-99f41317fc27","originalAuthorName":"邢志国"}],"doi":"","fpage":"1203","id":"46f40732-c34d-4b6a-a141-61b1d14d4a90","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"7079c771-b3ea-4858-b4d1-88626ec086d0","keyword":"超高周疲劳","originalKeyword":"超高周疲劳"},{"id":"b9d90b52-0489-4b16-bee0-245406d58655","keyword":"寿命预测","originalKeyword":"寿命预测"},{"id":"61dc2b24-54c7-4dc5-91cb-2ff12a621d81","keyword":"断口形貌","originalKeyword":"断口形貌"},{"id":"024a9c21-6f1c-4eda-b6ca-94c63c6a8825","keyword":"预测误差","originalKeyword":"预测误差"}],"language":"zh","publisherId":"xyjsclygc201605020","title":"超高周疲劳寿命预测方法探讨","volume":"45","year":"2016"},{"abstractinfo":"采用平面弯曲疲劳试验,测定了C1100P-1/4H纯铜和C2801P-1/4H黄铜的S-N曲线.结果表明,实验铜合金没有疲劳极限.随外加交变应力增大,疲劳寿命缩短.在相同外加应力条件下,轧制态合金的疲劳寿命高于退火态合金的疲劳寿命.利用Manson-Coffin法则和塑性应变幅与疲劳循环次数的理论关系,通过计算得到了铜合金的理论S-N关系曲线,与实验结果吻合较好,表明该理论S-N关系曲线可用来预测铜合金的疲劳寿命.","authors":[{"authorName":"张忠明","id":"c6c95bab-14cb-4f59-b802-af80f05da3b6","originalAuthorName":"张忠明"},{"authorName":"服部修次","id":"f739d410-1213-45b2-bb78-d113d888fa74","originalAuthorName":"服部修次"},{"authorName":"田川纪英","id":"948f34d4-4ea4-49ad-b573-6470c0dab361","originalAuthorName":"田川纪英"},{"authorName":"後藤光昭","id":"22cac1a1-232b-4126-8f5c-48851b60e1d7","originalAuthorName":"後藤光昭"},{"authorName":"石川纯明","id":"983bb4ad-a5c4-4208-9b1b-4f436b281e9b","originalAuthorName":"石川纯明"}],"doi":"10.3969/j.issn.1009-6264.2005.05.018","fpage":"76","id":"2a3275c4-d8e5-466e-8175-57c8f0625c15","issue":"5","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"925ffce2-98a8-4a88-b0ec-b71c5a4c90ab","keyword":"铜合金","originalKeyword":"铜合金"},{"id":"2af43a04-f93e-4eda-8f0f-c3897bdb0382","keyword":"疲劳","originalKeyword":"疲劳"},{"id":"966a9c6a-5140-4bc9-8eac-2277ffebb212","keyword":"S-N曲线","originalKeyword":"S-N曲线"},{"id":"b9c5e7b9-ba02-4100-a181-82d314fc4c75","keyword":"寿命预测","originalKeyword":"寿命预测"}],"language":"zh","publisherId":"jsrclxb200505018","title":"铜合金的疲劳寿命预测","volume":"26","year":"2005"},{"abstractinfo":"在疲劳短裂纹形成和扩展行为研究基础上,提出了一种疲劳 寿命估算方法。计算结果表明,该方法具有满意的预测精度。","authors":[{"authorName":"吕文阁","id":"de6de447-c45e-4f60-a78b-e15d05fb4d16","originalAuthorName":"吕文阁"}],"doi":"10.3969/j.issn.1000-3738.2001.02.005","fpage":"18","id":"d1981bca-b000-48e3-9f0f-230473043251","issue":"2","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"1639d9fb-ea08-4668-b45f-a26db36f7a53","keyword":"疲劳短裂纹","originalKeyword":"疲劳短裂纹"},{"id":"499a45bb-9aef-4c8e-8bf1-b5c4125712bf","keyword":"形成","originalKeyword":"形成"},{"id":"a7e6967b-507d-415b-8ccf-ab4873b67b87","keyword":"扩展","originalKeyword":"扩展"},{"id":"e38840d9-7e76-4da9-b19e-fde5cf94239e","keyword":"寿命估算","originalKeyword":"寿命估算"}],"language":"zh","publisherId":"jxgccl200102005","title":"基于疲劳短裂纹行为的疲劳寿命估算方法","volume":"25","year":"2001"},{"abstractinfo":"对TA15钛合金板材进行氩弧焊对接焊后,加工成光滑疲劳试件进行R=0.5,0.06的高周疲劳S-N曲线测试.试验后对试样断口进行扫描电镜(SEM)分析发现,疲劳源大多位于焊接区域的气孔或夹杂等焊接缺陷处.以焊接处微观结构缺陷尺寸作为初始裂纹尺寸,采用基于裂纹闭合的全寿命预测模型,以焊接区域不同位置的长裂纹扩展速率曲线作为基线,利用J.C.Newman的FASTRAN II软件对焊接接头试件的疲劳寿命进行预测,发现采用焊缝边缘处的长裂纹扩展曲线预测结果与试验结果吻合较好.","authors":[{"authorName":"胡本润","id":"94722cee-e0e9-4c50-b59b-e810e60c3229","originalAuthorName":"胡本润"},{"authorName":"陈勃","id":"31ed854a-17a8-4bb3-a1d5-aadfdfce37a4","originalAuthorName":"陈勃"},{"authorName":"王利发","id":"99fbda41-4ccf-4787-9ec8-bda6ba0f0997","originalAuthorName":"王利发"},{"authorName":"刘建中","id":"c1bc2706-3ee3-4cc5-973d-96761e4c6406","originalAuthorName":"刘建中"},{"authorName":"吴学仁","id":"7a50b1d6-0565-4523-a9b6-075d65361896","originalAuthorName":"吴学仁"},{"authorName":"范金娟","id":"a5892a28-f080-4567-a10f-f190be6c5c51","originalAuthorName":"范金娟"}],"doi":"10.3969/j.issn.1005-5053.2005.03.007","fpage":"28","id":"447e1858-fe20-4cee-9af5-f481117ad5a5","issue":"3","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"269c9924-d330-4420-acd8-2dc55b90f430","keyword":"疲劳","originalKeyword":"疲劳"},{"id":"2e07a087-d839-438c-8d1c-3c72ff624c44","keyword":"寿命预测","originalKeyword":"寿命预测"},{"id":"2d33bd45-f008-4f82-873f-7a464e9aa469","keyword":"氩弧焊接","originalKeyword":"氩弧焊接"}],"language":"zh","publisherId":"hkclxb200503007","title":"氩弧焊接接头疲劳寿命预测","volume":"25","year":"2005"},{"abstractinfo":"材料的疲劳寿命是机械可靠性设计的基础,也是疲劳性能研究的主要内容.大量的研究结果表明疲劳寿命具有离散性的特点,并且符合一定的统计分布规律.概述了材料疲劳寿命研究的重要性,分析了材料微观结构及实验模型对疲劳寿命的影响以及疲劳寿命研究的数理统计基础,分别介绍了正态分布和威布尔分布的特点,综述了数据处理方法在疲劳寿命研究中的具体应用.","authors":[{"authorName":"刘兵","id":"bcf16910-8035-46dc-90c8-755bd184d98b","originalAuthorName":"刘兵"},{"authorName":"何国球","id":"ab8777be-6296-4134-8fb1-9970757f0770","originalAuthorName":"何国球"},{"authorName":"蒋小松","id":"b4f999c5-f052-4db1-bcbb-a145ea7efc52","originalAuthorName":"蒋小松"},{"authorName":"朱旻昊","id":"e49026c7-05dc-4fc4-b511-7f45faa69856","originalAuthorName":"朱旻昊"}],"doi":"","fpage":"103","id":"22d6cbbf-9b83-4266-84f2-5566bed83d01","issue":"9","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"56d0b822-ce06-41d3-a381-c700a3a042a9","keyword":"疲劳寿命","originalKeyword":"疲劳寿命"},{"id":"1ee63547-b115-4554-bf02-f8d70480c1d4","keyword":"统计分布","originalKeyword":"统计分布"},{"id":"b8be6691-3f33-4ce2-a55a-cc22d9e15a46","keyword":"数据处理","originalKeyword":"数据处理"}],"language":"zh","publisherId":"cldb201109023","title":"材料疲劳寿命的影响因素和研究方法","volume":"25","year":"2011"},{"abstractinfo":"对带缺口构件疲劳寿命的构成、缺口疲劳裂纹萌生尺寸的定义、缺口疲劳寿命的局部应力估算方法、影响萌生寿命N1的主要因素、缺口疲劳寿命及锐缺口疲劳裂纹萌生寿命的研究现状等进行了简要综述,同时介绍了一种萌生寿命N1的新的表征参量△K/ρ(1/2),以及N1的估算方法.最后指出了控制缺口疲劳裂纹萌生寿命的主要参量以及它们之间存在的关系等亟待解决的问题与今后的发展趋势.","authors":[{"authorName":"魏安安","id":"4c531559-176b-43ab-a23b-453d176947f3","originalAuthorName":"魏安安"},{"authorName":"纪熙","id":"9854eb53-8c03-4fdd-8712-cc04f5086b87","originalAuthorName":"纪熙"},{"authorName":"李艳斌","id":"43f427a1-aad1-48e1-8a9c-e39ddac9b32a","originalAuthorName":"李艳斌"},{"authorName":"汪磊","id":"5cc98b54-6f0b-4aac-b909-914bb3355616","originalAuthorName":"汪磊"}],"doi":"","fpage":"1","id":"59a923fb-25df-4153-a28b-09abbf37ad51","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"7009d199-55ef-453d-9cc5-1f580cdb8e64","keyword":"缺口","originalKeyword":"缺口"},{"id":"c977be6b-87d1-4d9a-9749-ff1c79b5b55e","keyword":"疲劳寿命","originalKeyword":"疲劳寿命"},{"id":"1d2de08d-3f16-4ca0-ac6c-d7ffdc77cec0","keyword":"裂纹","originalKeyword":"裂纹"},{"id":"2a1d103c-95fe-4eef-b344-c5d20cd711c5","keyword":"萌生","originalKeyword":"萌生"}],"language":"zh","publisherId":"jxgccl201103001","title":"带缺口构件疲劳寿命的研究进展","volume":"","year":"2011"},{"abstractinfo":"通过对典型的热机械疲劳寿命预测模型的分析,结合GH4133合金的热机械疲劳损伤特性,建立了热机械疲劳寿命预测模型--新的损伤分数模型。用该模型预测了GH4133合金在571~823 ℃的热机械疲劳寿命。结果表明,新的寿命预测模型不仅简便,而且预测精度较高。","authors":[{"authorName":"王建国","id":"b3791051-1ab1-4f51-aee9-59a2c1eb7299","originalAuthorName":"王建国"},{"authorName":"王连庆","id":"8578f434-9d91-4821-b15b-45c64f469341","originalAuthorName":"王连庆"},{"authorName":"王红缨","id":"e3b8d145-1cc9-4c69-8259-0ab2464fe25a","originalAuthorName":"王红缨"},{"authorName":"徐世平","id":"263bca8a-6ee0-4e36-bcbd-b0242e833ad0","originalAuthorName":"徐世平"}],"doi":"","fpage":"44","id":"c9d57942-93b7-4e6d-81a3-564b38bd7734","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"2012fa8b-bf6b-4493-b045-740b8e7b8ae9","keyword":"热机械疲劳","originalKeyword":"热机械疲劳"},{"id":"1c4060b7-2ca9-42d5-9ddd-b8dd72fc3d23","keyword":"寿命预测","originalKeyword":"寿命预测"},{"id":"ed006da9-835a-4d41-a467-965ab78b42e4","keyword":"GH4133合金","originalKeyword":"GH4133合金"}],"language":"zh","publisherId":"gtyjxb200103011","title":"GH4133合金热机械疲劳寿命的预测","volume":"13","year":"2001"},{"abstractinfo":"通过拉-拉疲劳试验与理论分析,研究了间隙配合与干涉配合两种不同连接形式对机械连接复合材料接头疲劳寿命的影响,以及不同干涉量对干涉配合复合材料接头疲劳寿命的影响.研究结果表明:复合材料干涉配合接头的疲劳寿命远远高于间隙配合接头的疲劳寿命;干涉量对复合材料干涉配合接头的疲劳寿命有较大影响,所研究的干涉配合模型的最佳干涉量为 1%~1.4%.","authors":[{"authorName":"王武","id":"5b748741-a24b-425c-a98a-e943e222c640","originalAuthorName":"王武"},{"authorName":"陶华","id":"6ed37005-c5e4-4d1f-b57e-ba51f2d9d466","originalAuthorName":"陶华"},{"authorName":"刘风雷","id":"54563b20-09d1-475f-8712-10ae4f8d20b3","originalAuthorName":"刘风雷"},{"authorName":"白颢昱","id":"7296fc1a-cc70-4da6-80a1-ddedb40a5041","originalAuthorName":"白颢昱"}],"doi":"10.3969/j.issn.1009-9239.2006.04.013","fpage":"45","id":"5b4a92b1-0adf-4c3c-8b8e-25cb21d63d71","issue":"4","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"b30d1965-6362-4594-a181-002d22c03186","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"f1398de3-27c0-4142-94b6-8db08976bdcc","keyword":"干涉配合","originalKeyword":"干涉配合"},{"id":"d12fa8b9-489f-4253-ab6e-a690aab7d292","keyword":"疲劳寿命","originalKeyword":"疲劳寿命"}],"language":"zh","publisherId":"jycltx200604013","title":"干涉对复合材料疲劳寿命影响的研究","volume":"39","year":"2006"}],"totalpage":879,"totalrecord":8784}